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ABSTRACT

In this supporting information, we provide more details to the calculations sketched in the main text. In particular, we derive the
one component version of the Fokker-Planck equation and expressions for fixation probability and time. In addition, we show
additional data for the individual based model. We especially focus on the derivation and discussion of the mapping depending
on the memory of environments previously experienced by an individual.

In this Supporting Material, we provide more details on the
calculations leading to the one-dimensional Fokker-Planck
equation (FPE), Eq. (3) main text. Moreover, we present
calculations for the average fixation time and the extinction
probability. We discuss the mapping of the individual based
model (IBM) to the Langevin model. For the no-memory
limit we present an analytic derivation of the mapping. For
other parameter values we give heuristic arguments that are
supported by additional data. Finally, we present results for
non-neutral evolution investigating the regime in which the
white noise approximation is an adequate description for the
evolutionary process.

1 Derivation of the one-dimensional
Fokker-Planck equation

In this Section, we provide details how the Langevin equa-
tions,
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can be transformed into the one-dimensional FPE presented
in the main text. Both noise terms in Eq. (S1) are interpreted
in the Ito sense? because they only should act as noise, i.e.
enter the variances but do not affect the means, as it can be
seen in the Fokker-Planck equation (S4) [or (3) main text].

From general results on stochastic processes (see1), it fol-
lows that the previous Langevin equation is associated to the
following two-dimensional FPE :
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where ∂i ≡ ∂Ni . The drift part is directly stemming from
the non-fluctuating parts of the Langevin equations NS(νS−
γN/K). Diffusion depends on the correlation level of the
noises experienced by the two species. In particular, we have

introduced the correlation coefficient ε ≡ 〈ξ1ξ2〉/
√
〈ξ 2

1 〉〈ξ 2
2 〉.

The case when the two noises are the same is given by ε = 1,
when they are independent is ε = 0 and when they are anti-
correlated is ε =−1.

To study the evolutionary dynamics associated to Eq. (S2),
the relative abundances are the natural choice of variables.
Therefore, we transform the absolute abundances N1 and N2
to x = N1

N1+N2
and N = N1 +N2. To perform the change of

variables, not only N1 = xN and N2 = (1− x)N have to be
replaced, also the differential operators and the probability
distribution have to be transformed. Ensuring that the latter
is still normalized after change of variables, the Jacobian has
to be introduced, P(N1,N2)→ 1

N P(x,N). The derivatives are
given by, ∂N1 → 1−x

N ∂x +∂N and ∂N2 →− x
N ∂x +∂N .

After the change of variables, the FPE for x and N can
now be further simplified exploiting the fact that the time
scale of selection, s = ν1−ν2, is much slower than the one
of the population growth ν1x+ ν2(1− x).2 Therefore, we
marginalize the FPE with respect to the total population size
N. Thereby, the integrals

∫
∞

0 dN of N-derivative terms such
as ∂N• or N∂ 2

N•= ∂N (N∂N•)−∂N• vanish and the FPE sim-
plifies to
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where Q≡ x(1− x)P(x, t). The drift term in the second line
stemming from demographic fluctuations can be neglected
as N � 1 holds. To finally arrive at the one-dimensional
FPE employed in the main text, we compute the steady state
population size N∗. As the deterministic differential equation
for N is given by

Ṅ = N
[

xν1 +(1− x)ν2− γ
N
K

]
,

the fixed point for the populations size is N∗ = K/γ[ν1x+
ν2(1− x)]. Employing that relation and the aforementioned
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condition s� ν1x+ν2(1− x), the last term in Eq. (S3) can
be simplified as ν1−sx

2N ≈ γ

2K , which finally leads to the one-
dimensional FPE in the main text:
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2 Fixation probability
In the following, we derive a general expression for the fixa-
tion probability. The calculations are analogous to the proce-
dure for the neutral case described in the body of the paper.
To determine the fixation probability the following backward
equation has to be solved,
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Boundary conditions are Pfix(0) = 0 and Pfix(1) = 1. The
solution to Eq. (S5) for the fixation probability is
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The solution (S6) is obtained by integrating (S5) once, to
find the gradient

∂xPfix(x) = const.
(1+α(2x−1))ζ/2−1

(1−α(2x−1))ζ/2+1
. (S8)

The expression (S8) is verified to be proportional to the deriva-

tive of
(

1+α(2x−1)
1−α(2x−1)

)ζ/2
and boundary conditions are then im-

posed to fix the two constants of integration. The resulting
expression is finally transformed into Eq. (S6) by using the
elementary identity: 2Tanh−1(x) = log [(1+ x)/(1− x)]. It is
verified that in the limit ζ → 0, one recovers the expression
given in the main text.

All in all, the behavior we discussed in the main text is
validated by analyzing the fixation probability: Both a higher
growth rate and a smaller variability are beneficial for an
individual.

3 Average time for fixation
3.1 Neutral case
The expression for the time of fixation in the neutral case that
we presented in the body of the paper is derived as follows.
The average time for fixation obeys the following backward
equation,{
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with σ̃ = (1−ε)σ the boundary conditions T (0) = T (1) = 0.
Integrating Eq. (S9) and by variation of constants, we obtain:
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where A is a constant to be fixed by the boundary conditions.
The integrals

∫ x
0 of Eq. (S10) needed for T (x) are performed

by decomposing the rational function at the prefactor and
using the formula :∫ ln(a+bx)

x
dx = lna lnx−Li2

(
−bx

a

)
, a > 0 , (S11)

that follows from the very definition of the dilogarithm
Li2(x) = −

∫ x
0 ln(1−u)/udu (see3). The formula (S11) is

used four times either directly (with a simple change of
variables) or first integrating by parts to satisfy the condi-
tion a > 0 in (S11). The resulting expression is then trans-
formed to the form given in the main text (which is the
one given by Mathematica) by using the reflection property,
Li2(x)+Li2(1− x) = Li2(1)− lnx ln(1− x), see.3

3.2 General case
In the general case when selection is present, the expression
for the average fixation time cannot be found explicitly but is
reducible to quadratures as follows. The fixation time obeys
the backward equation (S5) with the left-hand side replaced
by −1. Using the definitions (S7), we obtain{
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Boundary conditions are T (0) = T (1) = 0. The homogeneous
solution was already found following (S8) and reads

Thom(x) =C1 +C2

(
χ+(x)
χ−(x)

)ζ/2

, (S13)

where C1 and C2 are constants and we defined

χ+(x)≡ 1+α(2x−1) , χ−(x)≡ 1−α(2x−1) , (S14)

to simplify notation. The non-homogeneous solution for the
gradient of T is obtained by varying the constant in (S8),

2/7



remarking that β 2x(1− x)+2 = χ+(x)χ−(x)(8+β 2)/4 and
integrating the resulting first-order differential equation to
obtain
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where F1 is the hypergeometric function of two variables.4

The solution for T involves the integral
∫ x

0 ∂y Tpart(y)dy of the
expression above (for which a closed form does not seem to
be available), and the two constants in (S13) are fixed by
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= −
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0
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It is verified from the expression above or directly from the
original equation (S12) that in the two limits x→ 0 and x→ 1
the solution behaves like in the neutral case, i.e. −K/γx logx
and −K/γ(1− x) log(1− x). Selection and the rest of the
parameters affect of course the solution in the rest of the
interval of definition x ∈ [0,1].

4 Coexistence time
Depending on the position of the stable fixed point, coex-
istence between two species (one with a larger growth rate,
one with a smaller variability, ν1 > ν2 and σ1 = ∆, σ2 = 0)
is possible. In this section we present some additional data
demonstrating this. In Fig. S1, the extinction time which
corresponds to the time of coexistence is shown depending
on ∆ is shown for different values of s. Dots correspond to
solutions of Eqs. (S1) and black lines are numerical solutions
of Eq. (S12). The extinction time has a maximum which
exactly coincides with the parameter values of a fixed point
x∗ = 0.5. The dependence of this maximal extinction time on
the selection strength s is shown in Fig. S2.

5 Mapping individual-based models onto
the Langevin dynamics

The aim of this Section is to show that individual-based mod-
els are described by the Langevin equations, Eqs. (S1), dis-
cussed in the main text and to analyze the mapping between
the parameters of the two models.

The environmental conditions change stochastically at the
rate 1/τ and are distributed according to a distribution, p(E),
with mean 〈E〉 and variance Var[E]. The dependency of the
instantaneous reproduction rate λS(E) on E is given by the
sigmoidal function :

λS(E) = φS +ωS tanh
(

αSE
2

)
, (S15)
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Figure S1. Extinction time depending on ∆ for different
values of the selection strength: s = 0.5 (red), s = 2 (violet)
and s = 5 (blue). Dots are numerical solutions of the
Langevin equations, Eq. (S1), and black lines are solutions of
Eq. (S12).
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Figure S2. Extinction time for different values of s and
∆ =

√
(2s). This combination of s and ∆ corresponds to a

stable fixed point at x∗ = 0.5 and the maximal coexistence
time for each value of s, see Fig. S1. As not only the selection
strength but also the variability is increasing from left to right,
the fixation time is a monotonically decreasing function of s.

which reduces to φS±ωS in the limit of large variances Var[E].
Birth rates are defined as,

Γ
i
repr,S =

1−m
1−mMi

Mi

∑
j=1

m j−1
λ (E i

j). (S16)

In the no-memory limit m = 0, the growth rate is therefore
given by the instantaneous growth rate λS(E), while for m→ 1
the current growth rate is the arithmetic mean of all previously
experienced environments. Death rates are given by Γi

death,S =
γN/K.

5.1 No memory, m = 0
We discuss first the model without memory, where the mem-
ory parameter, m, is zero : Individuals reproduce with the
instantaneous reproduction rates [Eq. (S15)], which reduce to
φS±ωS in the limit of large environmental variance. We con-
sider an interval of length δ t� τ such that the probability for
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an individual to reproduce or die is small, yet the total number
of events occurring over the whole population (∼ K� 1) is
large. Neglecting the standard demographic noise term,5 the
variation of the S-type population is given by

NS(t +δ t)' NS(t)+NS(t)
(

φS− γ
N(t)

K

)
δ t+

+ωS

∫ t+δ t

t
NS(s)σ̂(s)ds

(S17)

where σ̂(s) is the environmental Boolean random variable
that takes values ±1 and switches with characteristic time τ .
The last term of Eq. (S17) is estimated as follows∫

δ t

0
NS(t + s)σ̂(t + s)ds' NS(t)G e+

+NS(s)ωS

∫
δ t

0
σ̂(t + s)ds

∫ s

0
σ̂(t + s′)ds′ , (S18)

where G e is a Gaussian random variable having zero mean
and variance

Var[G e] =
∫

δ t

0
ds
∫

δ t

0
ds′〈σ̂(s)σ̂(s′)〉= 2τδ t . (S19)

Here, we used that 〈σ̂(t)σ̂(t ′)〉= e−|t−t ′|/τ and δ t� τ . The
second term in Eq. (S18) is evaluated at the order δ t using the
same integral, Eq. (S19), and gives NS(t)ωSτδ t. Combining
back all the terms, we conclude that the equation (S17) is
equivalent to the Langevin equation (S1) with the mapping of
the parameters

νS = φS +ω
2
S τ ; σ

2
S = 2ω

2
S τ . (S20)

Note that the standard demographic noise term in Eq. (S1)
should a priori include the fluctuating environmental term
NS(t)ωSG

e in the sum of the rates. In fact, it can be safely
ignored as φSNSδ t�ωSNS

√
2τδ t due to φS ≥ωS and δ t� τ .

Finally, the factor 2 appearing in σ2
S in (S20) depends on

the Poisson statistics of the environmental fluctuations. If the
duration is fixed and equal to τ , Eq. (S19) becomes τδ t. In
that case, the corresponding mappings are νS = φS +ω2

S τ/2
and σ2

S = ω2
S τ . This is confirmed numerically in Fig. S3

where we show data for exponentially distributed (black) and
fixed duration (red) environments. Solid lines are analytic
solutions of the fixation time [Eq. (6) main text] employing
the respective mappings.

5.2 Finite memory, m > 0
We now turn to the scenario where memory extends over
several environmental conditions that an individual previously
experienced. Whilst for m = 0 an exact analytic mapping
can be found in the limit of small τ , for finite memories the
situation is more intricate. However, for the special case m= 1
the variability in the growth rate can be well approximated
by the following argument. The reproduction rate Γi

repr,S of
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Figure S3. Comparison of data obtained by simulations in
the neutral case with fixed (red) and exponentially distributed
(black) environmental changes. Both sets of data agree with
our analytic calculations, where we used the mappings
σ2 = ω2τ for fixed times of environmental changes and
σ2 = ω22τ for exponentially distributed switches. Thereby,
the data confirms that the origin of the factor 2 in the mapping
is solely the exponential distribution of the environmental
changes. Parameters are φ1 = φ2 = 1 and ω1 = ω2 = 0.9,
γ = 1, K = 5000, 〈E〉= 0, Var[E] = 100 and τ = 0.01.

an individual, i, of type S at time t depends on the average of
all instantaneous reproduction rates λS(E) experienced by the
individual :

Γ
i
repr,S(t) =

1
Mi(t) ∑

k≤Mi(t)

λ
k
S (E

i
k) = φS + Γ̃

i
S(t) . (S21)

At the time of reproduction, we assume for simplicity that
offspring looses its memory of past environments experienced
by the progenitor.

We consider again a time interval of length δ t as in (S17).
Fluctuations in the rates Γ̃i

S(t) decorrelate on timescales of
the order of the lifetimes of individuals, tlife, which are much
longer than τ and δ t. Therefore on the δ t scale, noise is
smooth, contrary to (S17). Conversely, timescales of several
lifetimes are much smaller than those on which selection acts
and much longer than the characteristic time of the noise.
Therefore, to describe the dynamics of the fractions, the en-
vironmental noises are well approximated by a shortly cor-
related noise. An estimation of the amplitude of the noise is
obtained by calculating the sum

σ
2
S ∼

1
τ

∞

∑
`=−∞

NS

∑
i=1

NS

∑
j=1
〈Γ̃i

S(tk)∆tkΓ̃
j
S(t`)∆t`〉.

The durations ∆t of the environmental intervals are indepen-
dent for different k and ` (and the contribution k = ` is negligi-
ble with respect to the rest of the sum) so that one can replace
them by τ . In addition, the symmetry in the indices of the
intervals allows us to further simplify the expression

σ
2
S ∼ 2τ

∞

∑
`=k

NS

∑
i=1

NS

∑
j=1
〈Γ̃i

S(tk)Γ̃
j
S(t`)〉 . (S22)
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To compute the average in Eq. (S22) three different orders
of events have to be distinguished: a) If the birth of the j-th
individual was prior to the one of the i-th individual, then
it follows from Eq (S21) that the quantity to be averaged is
ω2

S Mi
k/
(

Mi
kM j

`

)
= ω2

S/M j
` , where M j

` is the number of envi-
ronmental switches since the birth of the i-th individual up to
time tk. To derive Eq. (S22) we have used that the terms in the
sum (S21) take independent values ±ωS with equal probabil-
ity. Conversely, case (b) is when the birth of the j individual is
posterior to the one of the i-th individual. Then the quantity to
be averaged is ω2

S

(
Mi

k−δb
)
/
(

Mi
kM j

`

)
, where δb is the time

between the birth of the i-th and the j-th individuals. Finally,
in case (c) when δb > Mi

k, the correlation is zero as there is
no overlap between the environmental fluctuations of the two
individuals. Due to the Poissonian nature of the events, the
number of switches since birth (back in the past) or before
reproduction (forward in the future) have the same distribution
exp(−M/M)/M where M ∼ tlife/τ (its exact value does not
affect the sequel). It follows that

σ
2
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2ω2
S τ
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[∫
∞
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∞
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∞
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∫

∞
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0
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∫ u
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(u− v+ t)u

]
.

(S23)

The integral over t is the continuous approximation of the
sum over `− k appearing in Eq. (S22) while the variables u
and v refer to the variables Mi

k and δb. The first and second
term in the square parentheses of (S23) correspond to cases
(a) and (b), respectively. By a series of change of variables
and integrations by parts, it is shown that (S23) reduces to

σ
2
S ∼

2ω2
S τ

M2

∫
∞

0
due−u/M

∫ u

0
dve−v/M = ω

2
S τ . (S24)

The validity of this approximation is confirmed for the neutral
case in Fig. 2 in the main body of the paper where the fixation
probability and time are compared to the analytic calculations
employing Eq. (S24). Additional data for non-neutral evolu-
tion is presented in Fig. S4 where two species (one with finite
variability, ω = 0.9, one with vanishing variability) are ana-
lyzed. Analytic solutions for the fixation time and probability
are fitted to simulation data. The best fit deviates less than 1%
from Eq. (S24).

We now briefly discuss the dependence of σS on the mem-
ory parameter m. In Fig. S5, the STD of the noise in the
growth rate, σ ,depending on the memory parameter, m, is
analyzed. Results were obtained by simulating the neutral
evolution case, measuring the fixation time and calculating
σ employing the analytic expression for the extinction time
[Eq. 6 main text]. For m = 0 the thereby obtained value
agrees nicely with the mapping introduced above indicated
by the red dashed line [Eq. (S20)]. With increasing memory,
m, the STD of the noise, σ , decreases monotonically and
approaches Eq. (S24) for m→ 1.
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Figure S4. Fixation probability and time for non-neutral
evolution with memory m = 1. Black dots correspond to
simulation results of the IBM and red lines are analytic
solutions. To obtain the latter we fitted Eq. (S6) and the
solution of Eq. (S12) to the IBM. We used
Ã = s+σ2

2 −σ1σ2ε and B̃ = σ2
1 +2σ1σ2ε +σ2

2 as fitting
parameters and obtained Ã =−3.04×10−3 and
B̃ = 8.25×10−3. Other parameters are φ1 = φ2 = 1,
ω1 = 0.9, ω2 = 0, τ = 1/100, γ = 1, K = 5000, 〈E〉= 0 and
Var[E].

Let us now analyze the mapping of the average reproduc-
tion rate νS. Importantly, this mapping is very sensitive to
model details which we will exemplify in the following. As
results for neutral species do not dependent on the average re-
production rate, we have to turn to the evolution of non-equal
individuals to understand the mapping of the growth rates. In
Fig. S4, we show the fixation probability for two species with
the same φ1 = φ2 = 1 but only the first species has a variable
reproduction rate ω1 = 0.9, ω2 = 0 for m= 1. Red lines corre-
spond to a fit with s = ν1−ν2 ≈−0.0030 and agree perfectly
with simulation results. In other words, the first species does
not only have a disadvantage due its sensitivity on environmen-
tal changes, σ1 > σ2, but also has a smaller average growth
rate. To study this effect in more detail, let us now analyze the
fixation probability dependence on the memory parameter m,
see Fig. S6 panel (a). Black dots correspond to the standard
IBM (if not mentioned otherwise our discussion applies to
this data), red dots to a slightly changed model which is going
to be introduced in the following. For m = 0 both species are
equally likely to fixate as the growth advantage of the more
variable species ν1 = φ +ω2

1 τ > ν2 = φ exactly compensates
for its disadvantage due to the STD of the noise σ1 > σ2. For
increasing values of m first the more variable (m < 0.7) later
the less variable species is favored (m > 0.7). Whether this
behavior is caused by the STD of the noise or differences in
the mean reproduction rates is not obvious as the influence of
both fitness contributions is of comparable strength. There-
fore, we estimate the selection coefficient, s = ν1−ν2, from
the fixation probability data, see Fig. S6 panel (b). This is
achieved by assuming that the variability of species 1 with
ω1 = 0 is zero (σ1 = 0) and that the variability of species
2 with ω2 = 8.237 is the same as in the neutral evolution
scenario and thereby given by the data presented in Fig S5.
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Figure S5. Numerical estimation of the STD of the noise
dependence on the memory parameter m. Extinction times in
the neutral scenario were measured. By evaluating the inverse
of the fixation time function [Eq. (6) main text] the STD of
the growth was calculated. For m = 0 the result agrees with
the mapping, cf. Eq (S20), indicated by the red dashed line.
For larger values of m the variability is reduced. Parameters
are φ1 = φ2 = 10, ω1 = ω2 = 8.237, τ = 1/500, γ = 1,
K = 100, 〈E〉= 0 and Var[E].

Note that this approximation might neglect some higher noise
correlations arising due to the coupling of both species via
the carrying capacity. For m = 0 the thereby obtained value
of s agrees well with our analytic results, cf. Eq. (S20). With
increasing m the growth rate of the more variable species
is decreased till the selection coefficients becomes negative
effectively favoring the more variable species. However the
decrease of the selection coefficient with m is smaller than the
reduction of σ shown in Fig. S5. Hence, for small m the more
variable species is favored as its advantage due to a larger aver-
age reproduction rate is larger than its disadvantage due to its
sensitivity on the environment. This advantage in the growth
rate is more sensitive to details in the IBM in comparison to
the variability discussed in the main text for the Langevin
equation Eq. (1).We are going to illustrate this by analyzing
a slightly modified version of the IBM. But before doing so,
we present an intuitive argument explaining one factor influ-
encing the average growth rate: When an individual is born it
experiences the current environment shorter than the average
length of an environment. However, the model weights all
experienced environments equally, see Eq. (7) in the main
text. As the first experienced environment is more likely to
be a good environment [more reproduction events happen
during more beneficial environments], higher growth rates
have a larger weight in the average and the average growth
rate of the variable species is effectively increased. To obtain
a description including this factor, it would be best to perform
a time average over all previously experienced environments.
Unfortunately, such a procedure is computationally very ex-
pensive. We therefore, test our explanation for the bias by
not including the very first environment, the one in which
an individual is born, in the averaged reproduction rate. The
red dots in Fig. S6 corresponds to simulation results for this
modified model. Even though all parameters are the same
and for τ = 1/500 and φ ≈ 10 an individual experiences in
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Figure S6. (a) Fixation probability and (b) selection
coefficient depending on the memory parameter m. The first
species’ growth rate depends on the environment while the
second one’s is constant. Black dots correspond to the IBM
introduced in the main body of the paper, while red dots
represent a model modification not memorizing the first
environment (the one in which an individual is born; for
details see text). While the fixation probability is a direct
simulation result, the selection coefficient s is inferred from it
using the additional data presented in Fig. S5. Parameters are
φ1 = φ2 = 10, ω1 = 8.237, ω2 = 0, τ = 1/500, γ = 1,
K = 100, 〈E〉= 0 and Var[E].

average 25 different environments, the small modification of
the model substantially changes the simulation results. While
the modification almost has no impact on the STD of the noise,
it alters the average reproduction rate. For instance the regime
in which the more variable species is favored completely dis-
appears, cf. red dots Fig. S6 where Pfix ≤ 0.5 for all m. This
example illustrates that on the first sight tiny details of an IBM
might substantially influence the evolutionary outcome and
that one should be cautious when drawing conclusions from
them. Importantly, the mechanism discussed in the main text
does not rely on specific assumptions of the microscopic mod-
els: A finite STD of the growth rate is always a disadvantage.
It might be compensated for by a larger average reproduction
rate but the same value of the growth rate without variability
is always preferable.

6 DEPENDENCE ON THE SWITCHING
RATE

In this Section, we present additional data for the non-neutral
case. Fig. S7 shows the fixation probability depending on
the environmental switching rate 1/τ . In particular, we in-
vestigate extinction for a species which is not sensitive to its
environment (φ1 = φ = 10, ω1 = 0) competing with a sen-

6/7



 0.4

 0.6

 0.8

 1

 0.01  1  100  10000

m = 0
m = 0.75
m = 1

fi
x
.
p
ro
b
.,
P
fi
x

Figure S7. Dependence of the fixation probability on the
environmental switching rate. Both species have the same
φ1 = φ2 = 10, but only the second species is sensitive to the
environment (ω1 = 0, ω2 = 9). For no memory (m = 0), both
species are equally likely to fixate, as the advantage in the
average growth rate of species 2 exactly compensates for its
disadvantage due to its sensitivity on the environment. For
m > 0 those two effects do not cancel out anymore and the
second species is favored. Other parameters are γ = 1,
K = 100, α = 1, 〈E〉= 0 and Var[E] = 100.

sitive species (φ2 = φ = 10, ω2 = 9) for different values of
m. In the case of no memory m = 0 both species are equally
likely to fixate as the advantage in the average reproduction
rate ν2 = φ +ω2τ exactly compensates for the disadvantage
due to the STD of the noise in the growth rate [see Eq. (S20)].
For larger values of the memory parameter, a bias favoring the
species with ω = 0 is present (the exact value of the fixation
probability depends on mapping details as discussed above).
Importantly, the bias is not only present for very quickly fluc-
tuating environments, but already emerges if reproduction
events happen on a time scale comparable to τ . This supports
the conclusion, that we were already drawing in the body of
this paper when discussing Fig. 4: the white noise approxi-
mation is an adequate description for such an evolutionary
process in that parameter regime.
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