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A Identification

We establish that our model is semi-parametrically identified. Our estimated model of schooling

restricts agents to binomial choices at each decision node and there is no role for time. However, we

provide identification results for a broader class of models. We allow for multinomial choices and

introduce time t ∈ T = {1, . . . , T}. The model in the paper is a special case of our more general

analysis. In this more flexible model, earnings functions are specified by:

Y(t, s) = µt,s(X(t, s)) + θ′αt,s + ε(t, s),

let p(t, s) = θ′αt,s + ε(t, s). The costs functions are specified by:

C(t, s′, s) = Kt,s′,s(Q(t, s′, s)) + θ′ϕt,s′,s + η(t, s′, s),

let w(t, s′, s) = θ′ϕt,s′,s + η(t, s′, s). Finally, the measurement functions are specified by:

M(j) = µj(X(j)) + θ′γj + ν(j),

let e(j) = θ′γj + ν(j).

The observed components are determined by covariates X(t, s) ∈ X (t, s) for earnings, Q(t, s′, s) ∈

Q(t, s′, s) for costs, and X(j) ∈ X (j) for measurements. We show that all functions µt,s(X(t, s)),

Kt,s′,s(Q(t, s′, s)), µj(X(j)) and all distributions FP(t,s)(p(t, s)) of unobservables for outcome equations,

all distributions FW(t,s′,s)(w(t, s′, s)) of the unobservables in all costly exits from each state, and all dis-

tributions FE(j)(e(j)) of the unobservables in all measurement equations are identified for any t, s′, s,

and j. We extend the results from Heckman and Navarro (2007) to a context of recurring states and

multinomial transitions. To simplify notation we remove individual subscripts and consider vectors

of individual observations indexed over t and s. Variables without arguments refer to any t, s, j, and i.
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Define U(t′, ω | I(t, s)) = −Kt′,ω,s(Q(t′, ω, s)) + E[V(t′, ω) | I(t, s)] and consider the difference:

∆[t′, ω
∣∣ I(t, s)] = (U(t′, ω | I(t, s))− w(t′, ω, s))− max

σ∈Ω(t,s)
σ 6=ω

(U(t′, σ | I(t, s))− w(t′, σ, s)),

such that state ω is picked whenever ∆[t′, ω
∣∣ I(t, s)] > 0. This condition defines a partition in the

space of the unobservables such that state ω is selected.

Theorem 1. Assume that:

(i) P, W, and E are continuous random variables with mean zero, finite variance, and support Supp(P) ×

Supp(W) × Supp(E). Assume that the cumulative distribution function of W is strictly increasing over

its full support for any t and s.

(ii) X, Q ⊥⊥ (P, W, E) for all t and s.

(iii) Supp(µ(X), µj(X), U(Q)) = Supp(µ(X)) × Supp(µj(X)) × Supp(U(Q)).

(iv) Supp(−W) ⊆ Supp(U(Q)) for any t and s.

Then µt,s(X(t, s)) is identified for any t and s, µj(X(j)) is identified for all j, and the joint distribution

FP(t,s),E(j)(p(t, s), e(j)) is identified for any t, s, j.

Proof. Conditions (iii) and (iv) guarantee that there exist sets Q(t, s′, s) such that

lim
Q(t,s′,s)→Q(t,s′,s)

P(∆[t′, s′] > 0) = 1.

In the limit sets, we can form:

Pr[p(t, s) < Y(t, s)− µt,s(X(t, s)), e(j) < M(j)− µj(X(j)) |X(j) = x(j), X(t, s) = x(t, s)] =

= FP(t,s),E(j)(Y(t, s)− µt,s(x(t, s)), M(j)− µj(x(j))),

and then we can trace out the whole distribution FP(t,s),E(j)(p(t, s), e(j)) by independently varying the

points of evaluation.
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Whenever the limit set condition is not satisfied in the analyzed sample, then identification relies

either on the assumption that in large samples such limit sets exist, or it is conditional on a subset and

only bounds for model parameters can be recovered. Notice that the plausibility of these conditions

depends on the postulated model. In particular, the richer the specification for the set of feasible future

states S f (t, s) and the finer the time partition for the model, the harder it is to have this condition

satisfied in the data. Fewer observations will populate each state in any given finite sample. Given

the above theorem, which mimics Theorem 4 in Heckman and Navarro (2007), we can identify the

joint distribution of outcomes across different states s and times t using factor analysis as described

in the aforementioned paper. Factor analysis also allows to identify the factor loadings (αt,s, γj) and

to separately identify the marginal distributions of the factors θ and the marginal distribution of the

idiosyncratic shocks ε(t, s) and ν(j) for any t, s, and j. Note that the measurement system is not needed

for identification of the factor distributions if the state space is sufficiently large (the number of states

plus the number of transitions is greater than 2N + 1 when N is the number of factors). However, it

increases efficiency and aids in the interpretation of the factors, e.g., as cognitive and non-cognitive

abilities.

Theorem 2. Assume that:

(i) Conditions (i) to (iv) of Theorem 1 are satisfied.

(ii) Kt,s(Q(t, s′, s)) is a continuous function for any t and any s.

(iii) Q(t, s′, s) ∈ Q, a common set over t and s.

(iv) For each transition remaining in the current state is always a costless option. For an agent in state s in t:

Kt′,s′,s(Q(t′, s′, s)) + w(t′, s′, s) = 0 if s′ = s.

(v) For all alternatives ω ∈ Ω(t, s) there exist a coordinate of Q(t′, ω, s) that possesses an everywhere positive

Lebesgue density conditional on the other coordinates and it is such that Kt′,ω,s(Q(t′, ω, s)) is strictly

increasing in this coordinate.

(vi) U(t′, ω | I(t, s)) belongs to the class of Matzkin (1993) functions according to her Lemmas 3 and 4.

Then we identify the function Kt,ω,s(Q(t, ω, s)), the marginal distribution of the unobservable portion of the cost
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functions FW(t,ω,s)(w(t, ω, s)), and exploiting the factor structure representations, the factor loadings ϕt,ω,s and

marginal distribution of the idiosyncratic shocks in the costs functions FH(t,ω,s)(η(t, ω, s)) for all transitions.

Proof. Consider all final transitions. We define transitions to be final when they lead to final states.

A state s is defined as final if Ω(t, s) = {s} for all t. No choice is left to the agent but to remain

in the current state. Recall that remaining in the current state involves no costs. For any final state

ω ∈ Ω(t, s) we have:

U(t′, ω | I(t, s)) = −Kt′,ω,s(Q(t′, ω, s)) + E[V(t′, ω) | I(t, s)]

= −Kt′,ω,s(Q(t′, ω, s)) + E[(µt′,ω(X(t′, ω)) + p(t′, ω)) | I(t, s)]

= −Kt′,ω,s(Q(t′, ω, s)) + µt′,ω(X(t′, ω)) + E[p(t, ω) |∆[t′, ω | I(t, s)] > 0, I(t, s)]

= −Kt′,ω,s(Q(t′, ω, s)) + µt′,ω(X(t′, ω)) + θ′αt,ω.

Notice that µt′,ω(X(t′, ω)) + θ′αt,ω is known by Theorem 1 and due to the factor structure assumption.

Thus we can identify the cost equation Kt′,ω,s(Q(t′, ω, s)). Imposing restrictions on the generality of

the cost function Kt′,ω,s(Q(t′, ω, s)) is necessary such that U(t′, ω | I(t, s)) satisfies (ii), (v), and (iv).

Standard arguments from Matzkin (1993) guarantee identification of the function Kt,s′,s(Q(t, s′, s)). We

do not have to worry about the fact that only differences in utilities are identified in her setup as by

(iii), we always have an alternative which implies zero costs. We can also identify the distribution

FW(t′,ω,s)(w(t′, ω, s)) for any final states. Exploiting the factor structure we can then identify the joint

distribution FW(t′,ω,s),P(t′,ω,s),E(j)(w(t′, ω, s), p(t′, ω, s), e(j)) for all final transitions and by isolating the

dependency between unobservables, we identify the marginal distribution FH(t,ω,s)(η(t, ω, s)) for each

final transition. Once these are obtained, by backward induction all expected value functions are

identified and therefore all Kt,s′,s(Q(t, s′, s)) and FW(t′,ω,s),P(t′,ω,s),E(j)(w(t′, ω, s), p(t′, ω, s), e(j)) for any

transition and all marginal distributions FH(t,ω,s)(η(t, ω, s)) for any transition are identified. Note that

linearity does not fulfill the necessary conditions and only allows for identification up to scale. We

therefore need to consider the case separately where the scale of the cost function is not identified.

Theorem 3. Assume that:

(i) Conditions of Theorem 1 and 2 are satisfied, but for the fact that the scale of Kt,s′,s(Q(t, s′, s)) is not
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identified as when it is linear.

(ii) (a) In any final state, X (t, s)\Q(t, s′s) is not empty and µt,s(X(t, s)) has an additive component which de-

pends only on variables inX (t, s)\Q(t, s′s). Alternatively, (b) there is a coordinate of the vector Q(t, s′, s)

such that Kt,s′,s(Q(t, s′s)) is additively separable in that coordinate and it has a known coefficient.

Then the scale of Kt,s′,s(Q(t, s′, s)) is determined.

Proof. Assumption (ii.a) guarantees that there is a component which can be identified in the outcome

equations by the limit sets argument and that can be independently varied from other elements in

U(t, s). Applying (ii.b) implies that the scale is known. Notice that the expected value function has an

equivalent role as one of the variables in the set defined by (ii.a) for any non final transition, provided

that the discount rate is known. Otherwise, if the discount rate is not known and therefore appears

as a coefficient in front of U(t′, ω) for future accessible states, we require exclusion restrictions of the

type in (ii) in at least one non final transition to identify it.

Following the analysis of Heckman and Navarro (2007), we can identify the discount rate under the

same conditions given there.
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B Data Description

Our baseline data is the NLSY79 (Bureau of Labor Statistics, 2001). We restrict our sample to white

males only. We construct longitudinal schooling histories by compiling all information on school

attendance, including self-reports and the high school survey. We then check the compatibility of

all the information for each individual within and across time. In the presence of contradictions, we

review all information for the questionable observation and try to identify the source of the error and

correct it. If impossible, we drop the observation. Finally, we impose the structure of our decision tree

on the agents’ educational histories. We ignore any form of adult education.

We use the following set of observables: annual earnings, current geographic location, small child

in household, number of siblings, mother’s and father’s education, dummy variables for marriage

status, intact families in 1979, south at age 14, and urban area at age 14.

We impute missing values. When dealing with time constant covariates, imputation is straightfor-

ward. If information on time varying covariates is missing for only a few years, we use a three year

moving average for continuous covariates and the last value for discrete variables. Otherwise the

agent is dropped from our sample. If annual earnings are missing for a limited time only, we impute

them using a three year moving average.

We use tuition data for two- and four-year colleges from the Integrated Postsecondary Education

Data System (IPEDS). We carefully construct state averages. We ensure comparability of the tuition

data over time and address the change in the definitions in 1986.1 We only use tuition from public

universities. We construct local economic conditions such as hourly wages and unemployment using

the Current Population Survey (CPS) data by state, level of education, ethnicity, and gender. We merge

all datasets using the NLSY Geocode Data.

1We thank Amanda Agan for spotting the inconsistency and suggesting the solution to it in accordance with suggestions
received from the statisticians at the National Center for Education Statistics.
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C Rates of Return, Option Values, and Regret

Table 1 presents internal rates of return for selected comparisons of schooling levels. For definition

of this traditional concept, see Heckman et al. (2006). We compare the recorded earnings streams until

age 45. We therefore consider earnings in all states up to the one in the first column. Missing earnings

are set to zero, unless during high school enrollment. There we impute a three year moving average.

Table 1: Internal Rates of Return

All

High School Graduation vs. High School Dropout 215%

Early College Graduation vs. Early College Dropout 24%

Early College Graduation vs. High School Graduation (cont’d) 19%

Late College Dropout vs. High School Graduation (cont’d) 10%

Late College Graduation vs. High School Graduation (cont’d) 17%

Late College Dropout vs. High School Graduation (cont’d) 16%

Notes: The calculation is based on 1,407 individuals in the observed data.

The Mincer rate of return is 11.6%.

Table 2 reports the median ex ante net returns to education by treatment status. We condition on

agents that actually visit the relevant decision state. The treated choose the transition to the state in

the first column.
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Table 2: Net Returns

State All Treated Untreated

High School Finishing 64% 75% -27%

Early College Enrollment -3% 24% -28%

Early College Graduation 50% 82% -44%

Late College Enrollment -21% 22% -38%

Late College Graduation 10% 62% -51%

Notes: We simulate a sample of 50,000 agents based on the estimates of the

model.

Table 3 reports the average ex ante gross returns to education by treatment status. We condition on

agents that actually visit the relevant decision state. The treated choose the transition to the state in

the first column.

Table 3: Gross Returns

State All Treated Untreated

High School Finishing 27% 29% 16%

Early College Enrollment 14% 20% 8%

Early College Graduation 75% 84% 49%

Late College Enrollment 29% 28% 29%

Late College Graduation 24% 36% 9%

Notes: We simulate a sample of 50,000 agents based on the estimates of the

model.

Table 4 shows the percentage of agents experiencing regret, i.e., those agents for which the ex post

and ex ante returns do not agree in sign. We condition on agents that actually visit the relevant decision

state. The treated choose the transition to the state in the first column.
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Table 4: Regret

State All Treated Untreated

High School Finishing 7% 4% 24%

Early College Enrollment 15% 28% 2%

Early College Graduation 29% 33% 19%

Late College Enrollment 21% 27% 19%

Late College Graduation 27% 34% 18%

Notes: We simulate a sample of 50,000 agents based on the estimates of the

model.

Table 5 reports the option value contribution, i.e., the relative share of the option value in the overall

value of each state. We condition on agents that actually visit the relevant decision state. The treated

choose the transition to the state in the first column.

Table 5: Option Value Contribution

State All Treated Untreated

High School Finishing 7% 8% 2%

Early College Enrollment 30% 37% 23%

Late College Enrollment 17% 24% 15%

Notes: We simulate a sample of 50,000 agents based on the estimates of the

model.
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D Approximation Error in Adaptive Gauss-Hermite Quadrature

We present an analysis of the accuracy of the Gauss-Hermite quadrature method in the context of

our model.2 We consider a simple model with three states and a single transition. This section is

self-contained and the notation is independent from the rest of the paper.

Denote the start state as S with two possible exits, states Z and Q. The transition from S to Q has

an associated cost equation while the transitions from S to Z is costless. Suppose further that state S

has no contemporaneous value, while Q and Z are characterized by an associated outcome equation.

Furthermore, suppose that the model specifies one unobserved normally distributed factor and one

measurement equation. All unobserved components are assumed to be normally distributed with

mean zero. The components of the likelihood therefore are the following.

• The factor density:

f1(θ) =
1
σ1

φ

(
θ

σ1

)
. (1)

• The distribution of the random disturbance for the outcome equations in state Q and Z. Let i in

{2, 3} index states {Q, Z}. States 2 and 3 are characterized by a single linear outcome equation

whose disturbance is specified by the density:

fi(εi | xi, θ) =
1
τi

φ

(
yi − x′i βi − αiθ

τi

)
(2)

which can be rewritten emphasizing its interpretation as a density for the factor viewed as a

random effect on each outcome:

fi(εi | xi, θ) =
1

|αi| τi
|αi |

φ

− θ − yi−x′i βi
αi

τi
αi

 =
1
|αi|

1
σi

φ

(
θ − µi

σi

)

where µi ≡
yi−x′i βi

αi
and σi ≡ τi

|αi | .

2We thank George Yates for his help in preparing this appendix.



ML versus SMM XI

• The density of the random disturbance, ε4, in the measurement equation:

f4(ε4 | x4, θ) =
1
τ4

φ

(
m4 − x′4β4 − α4θ

τ4

)
(3)

which can also be rewritten emphasizing its interpretation as a density for the factor viewed as

a random effect on the measurement:

f4(ε4 | x4, θ) =
1
|α4|

1
σ4

φ

(
θ − µ4

σ4

)

where µ4 ≡
y4−x′i β4

α4
and σ4 ≡ τ4

|α4| .

• The density of the cost disturbance in the equations determining the costs of going from S to

Q. Given that Q and Z are both final states, denoting by C the variables determining the cost

equation, the difference in their values is given by:

∆VQZ = VQ −VZ = (x′QβQ + αQθ)− (x′CβC + αCθ + ε5)− (x′ZβZ + αZθ) (4)

= (x′QβQ − x′CβC − x′ZβZ) + (αQ − αC − αZ)θ (5)

Define the vectors:

x5 ≡ [xQ xC xZ] β5 ≡ [βQ βC βZ]

and the scalar:

α5 ≡ αQ − αC − αZ.

We then have that the probability of an agent of selecting one of the final states j in {Q, Z} is

given by:

P(j | x5, θ) = g(θ | x5) =


Φ
(

x′5β5+α5θ
τ5

)
if j = Q is picked,

1−Φ
(

x′5β5+α5θ
τ5

)
if j = Z is picked.

(6)

Notice that the likelihood is now a multivariate normal distribution times the CDF component where
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everything is a function of the unknown factor and of the covariates:

L(Ψ | X) =
∫

R

[
4

∏
k=1

fk(θ)

]
g(θ)dθ

=
1

|α2α3α4|

∫
R

1
(2π)k/2|Σ|1/2 exp

(
−1

2
(θ − µ)′Σ−1(θ − µ)

)
g(θ)dθ (7)

where:

µ =



0

µ2

µ3

µ4


and Σ =



σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4


.

The above multivariate normal distribution can be factored into a single distribution. This implies that

the above likelihood can be written as:

L(Ψ | X) =
1

|α2α3α4|

∫
R

[
4

∏
k=1

1
σk

φ

(
θ − µk

σk

)]
g(θ)dθ

= κ
∫

R

[
1
σ∗

φ

(
θ − µ∗

σ∗

)]
g(θ)dθ (8)

where κ, µ∗, and σ∗ can be found by simple algebra.

By use of this example we can characterize the approximation error in adopting the adaptive Gauss-

Hermite quadrature method to perform the integral specified in the above likelihood. Suppose the

agent chooses cost-exit Q when exiting state S. Using the formula for the Gauss-Hermite quadrature

(Judd, 1998) and the standard mathematical notation (Φ ◦ ϕ)(θ) for the function composition Φ(ϕ(θ)),

the probability of the agent’s observed decision is the smooth function:

G(θ) = g(θ) = Φ
(

x′5β5 + α5θ

τ5

)
= (Φ ◦ ϕ)(θ), (9)

where

ϕ(θ) ≡ r5θ + s5 with r5 ≡
α5

τ5
and s5 ≡

x′5β5

τ5
. (10)

Agent specific parameters µ∗, σ∗ are specified by the above multivariate normal distribution, whence
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the integral in (8) is

∫
R

1
σ∗

φ

(
θ − µ∗

σ∗

)
G1(θ)dθ =

∫ ∞

−∞

e−y2

√
π

(Φ ◦ ϕ ◦ AH) (y|µ∗, σ∗) dy

≈
N

∑
n=1

ϑnΦ
(√

2t5Pn + u
)

, (11)

where AH (y|µ∗, σ∗) ≡
(√

2σ∗y + µ∗
)

, (ϕ ◦ AH)(y|µ∗, σ∗) = r5

(√
2σ∗y + µ∗

)
+ s5 =

√
2t5y + u by

standard formulas for the Gauss-Hermite quadrature (Judd, 1998) and (10) with

t5 ≡ r5σ∗ =
α5σ∗

τ5
and u ≡ r5µ∗ + s5 =

x′5β5 + α5µ∗
τ5

. (12)

Lemma 1. Approximation (11) is exact when α5 = 0.

Proof. By (10), α5 = 0⇒ r5 = 0⇒ G(θ) = Φ(s5). So, mathematically, when α5 = 0,

∫
R

1
σ∗

φ

(
θ − µ∗

σ∗

)
G(θ)dθ = Φ(s5)

∫
R

1
σ∗

φ

(
θ − µ∗

σ∗

)
dθ = Φ(s5) = Φ

(
x′5β5

τ5

)
. (13)

Also, by (12), (10), α5 = 0⇒ (t5 = 0 and u = s5). So, algorithmically, using quadrature formulas,

∫
R

1
σ∗

φ

(
θ − µ∗

σ∗

)
G(θ)dθ ≈

N

∑
n=1

ϑnΦ
(√

2t5Pn + u
)
= Φ(u)

N

∑
n=1

ϑn = Φ(s5). (14)

By Lemma 1, in analysis of approximation error, we may assume α5 6= 0. In the following discus-

sion, we develop intuition about the accuracy of approximation (11) when α5 6= 0. Define

F(y) ≡ 1√
π

e−y2
(Φ ◦ ϕ ◦ AH)(y|µ∗, σ∗) ≡

1√
π

e−y2
Φ(
√

2t5y + u) (15)

where the equalities follow from (10) and (12).

F(y) is the integrand in the middle expression of (11), the likelihood integrand (for the simple

model) transformed for adaptive Gauss-Hermite quadrature. Therefore by (8), κ times the integral

of F(y) over R is the likelihood of an observed agent experience, conditional on the factor. Figure 1 is
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a plot of F(y) and its multiplier components as defined by (15), with t5 = 1 and u = 0. The figure and

the others below are presented to support initial intuition about the geometry of the likelihood form

in the simple model with one agent decision.

Figure 1: Plot of the transformed likelihood integrand components of (15) with parameters t5 = 1 and
u = 0

.

Note: The complete integral of F(y) = 0.5 for all t5 when u = 0. See Lemma 2 below.

Notice that:

1√
π

e−y2
=

1√
2π 1√

2

e−
1
2

(
y/ 1√

2

)2

=
√

2φ(
√

2y) = the pdf of the N
(

0,
1√
2

)
distribution. (16)

Thus, ∫
R

F(y)dy =
∫ ∞

∞

e−y2

√
π

Φ(
√

2t5y + u)dy =
√

2
∫ ∞

−∞
φ(
√

2y)Φ(
√

2t5y + u)dy. (17)

Then,

z ≡
√

2y⇒
∫

R
F(y)dy =

√
2
∫ ∞

∞
φ(z)Φ(t5z + u)

dz√
2
=
∫ ∞

∞
φ(z)Φ(t5z + u)dz. (18)

Lemma 2. If u = 0 then, for all t5 ∈ R \ {0}, (a)
∫

R
F(y)dy = 1

2 and (b) approximation (11) is exact for all

N > 0.
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Proof. Pick any t5 6= 0 and note that, by (18) and (11),

u = 0⇒
∫

R
F(y)dy =

∫ ∞

−∞
φ(z)Φ(t5z)dz ≈

N

∑
n=1

ϑnΦ(
√

2t5Pn) (19)

Also recall two symmetry properties of the standard normal distribution. For all x ∈ R,

Φ(−x) = 1−Φ(x)

φ(−x) = φ(x).
(20)

Then (a) in Lemma 2 is proved by a simple calculation using (19) and (20). By (19):

∫
R

F(y)dy =
∫ 0

−∞
φ(z)Φ(t5z)dz +

∫ ∞

0
φ(z)Φ(t5z)dz. (21)

To the first integral on the right in (21) apply change of variables s ≡ −z ≥ 0. Using (20):

∫ 0

−∞
φ(z)Φ(t5z)dz = −

∫ 0

∞
φ(−s)Φ(−t5s)ds =

∫ ∞

0
φ(s)[1−Φ(t5s)]ds =

1
2
−
∫ ∞

0
φ(s)Φ(t5s)ds. (22)

Substituting (22) into (21), we see immediately:
∫

R
F(y)dy = 1

2 . (a) is proved.

Finally, (b) is proved using (19), (20), and properties of Gauss-Hermite points and weights WN . When

N = 1 is immediate:

W1 = {(0,
√

π)} ⇒
N

∑
n=1

ϑnΦ(
√

2t5Pn) = Φ(0) =
1
2

. (23)

When N > 1, we use properties of points and weights in WN for all N. Specifically, (b.1) the points

in WN , zeros of the Hermite polynomial of degree N, occur in pairs {±Pm : m = 1, . . . , bN
2 c} equal but

opposite in sign. If N is odd, the last point P0 = 0. Moreover, (b.2) for each m indexing a pair ±Pm, the



ML versus SMM XVI

weights {W±m := 1, . . . , bN
2 c} in WN are equal and positive; that is, W+

m = W−m ≡ Wm > 0 for each n. If

N is odd, W0 =
√

π − 2 ∑
N−1

2
m=1 Wm. Thus, when N is even,

N

∑
n=1

ϑnΦ(
√

2t5Pn) =

N
2

∑
m=1

ϑm

[
Φ(
√

2t5Pm) + Φ(−
√

2t5Pm)
]
=

N
2

∑
m=1

ϑm =
1
2

;

and when N is odd:

N

∑
n=1

ϑnΦ(
√

2t5Pn) =

N−1
2

∑
m=1

ϑm =
1
2

1− 2

N−1
2

∑
m=1

ϑm

+

N−1
2

∑
m=1

ϑm =
1
2

.

By Lemma 2, in analysis of approximation error, we may assume u 6= 0. We next develop intuition

about the accuracy of approximation (11) in the general case α5 6= 0 6= u. Analogous to the pdf in (16),

note that:

Φ(
√

2t5y + u) = Φ

 t5

|t5|
y−

(
− u√

2t5

)
1√

2|t5|

 . (24)

The normal CDF component of F(y) has mean − u√
2t5

and standard deviation 1√
2|t5|

. Characteristics of

F(y) components (16) and (24) are primary features of adaption to each agent. The original integrand

density for N(µ∗, σ∗) is transformed to a fixed density in (16) centered at the origin. The original

CDF is translated and rescaled to compensate as in (24). By (12), a small standard deviation σ∗ may

imply a small t5 which implies the CDF (24) in F(y) has a large standard deviation. Untransformed

density with narrow peak is replaced by a pdf of fixed peak-width > 2
√

2. Quadrature points populate

expanded support of the transformed integrand. Figures 2 - 7 below illustrate the integrand F(y) in

(15) for selected values of t5 and u. When u and t5 are positive, the CDF component mean is left of the

origin by (24).
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Figure 2: Plot of transformed likelihood integrand components in (15) with parameters t5 = 0.5 = u
.

Note: The integral of F(y) ≈ 0.672639576990712 with N = 15. See Table 6 below.

Figure 3: Plot of transformed likelihood integrand components in (15) with parameters t5 = 1.0 = u
.

Note: The integral of F(y) ≈ 0.760249938906524 with N = 28. See Table 7 below.
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Figure 4: Plot of transformed likelihood integrand components in (15) with parameters t5 = 2.0 = u
.

Note: The integral of F(y) ≈ 0.814453315238651 with N = 78. See Table 8 below.

When u < 0 and t5 > 0, the CDF component mean is right of the origin by (24):

Figure 5: Plot of transformed likelihood integrand components in (15) with parameters t5 = 0.5 = −u
.

Note: The integral of F(y) ≈ 0.327360423009288 with N = 15. See Table 9 below.
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Figure 6: Plot of transformed likelihood integrand components in (15) with parameters t5 = 1.0 = −u
.

Note: The integral of F(y) ≈ 0.239750061093477 with N = 29. See Table 10 below.

Figure 7: Plot of transformed likelihood integrand components in (15) with parameters t5 = 2.0 = −u
.

Note: The integral of F(y) ≈ 0.185546684761349 with N = 81. See Table 11 below.

The integral of the transformed likelihood integrand F(y), plotted in Figures 2 - 7, may be approxi-

mated by (11). For each selected pair of parameters (u, t5) in Figures 2 - 7, Tables 6 - 11 below describe

accuracy of the quadrature sum in (11) as a function of the number of quadrature points N. Calcu-

lations for each table below were used to position the vertical lines under the curve of F(y) in each

figure above. For the N of the last row in each table, quadrature points in WN that fall in the interval

[−3,+3] are at the position of those vertical lines and small y-axis-ticks in the figure corresponding to
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the table. In the tables, the quadrature sum in (11) that approximates
∫

F(y)dy is denoted:

W ∑
N
(Φ|u, t5) =

N

∑
n=1

ϑn(Φ ◦ AH)(Θn|u, t5) =
N

∑
n=1

ϑnΦ(
√

2t5Θn + u)

=
N

∑
n=1

ϑn(Φ ◦ ϕ ◦ AH)(Θn|µA
∗ , σ∗)

= W ∑
N
(GA

1 |µA
∗ , σ∗).

(25)

Let H ∑N(Φ|u, t5) = ∑N
n=1 ϑnΦ

(√
2t5Pn + u

)
, then the error of approximation (11) is simply the dif-

ference:

EN(u, t5) =
∫

R
F(y)dy− H ∑

N
(Φ|u, t5)

=
∫

R

1√
π

e−y2
Φ
(√

2t5y + u
)

dy−
N

∑
n=1

ϑnΦ
(√

2t5Pn + u
)

. (26)

For each table row,
∫

F(y)dy was calculated by Romberg integration on the interval [−9,+9]. Romberg

calculation was conducted in 19-digit hardware precision. Iterative refinement of the interval partition

terminated with the relative error of polynomial interpolation < 10−16. Since approximation error

EN(u, t5) does not directly reveal the number of significant digits in the approximation, define the

relative error at N points of approximation (11):

REN(u, T5) ≡

∣∣∣∣∣∣
∫

R
1√
π

e−y2
Φ
(√

2t5y + u
)

dy−∑N
n=1 ϑnΦ

(√
2t5Φn + u

)
∫

R
1√
π

e−y2 Φ
(√

2t5y + u
)

dy

∣∣∣∣∣∣ . (27)

Then the decimal significance at N points of approximation (11) is:

Sn(u, t5) = − log10 REN(u, t5) (28)

= log10

∣∣∣∣∣∣
∫

R
1√
π

e−y2
Φ
(√

2t5y + u
)

dy∫
R

1√
π

e−y2 Φ
(√

2t5y + u
)

dy−∑N
n=1 ϑnΦ

(√
2t5Pn + u

)
∣∣∣∣∣∣ . (29)

In the tables, SN(u, t5) rounded down to the nearest integer is the number of significant decimal digits
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in H ∑N(Φ|u, t5) relative to the Romberg value for
∫

F(y)dy. For given (u, t5), each table lists values of

H ∑N(Φ|u, t5) and the signed integer (26) for selected increasing N until REN(u, t5) < 10−15. Thus, ta-

ble lengths vary with the efficiency of Gauss-Hermite quadrature at each (u, t5). The last two columns

show REN(u, t5) with SN(u, t5) rounded down the the nearest tenth. When H ∑N(Φ|u, t5) equals the

Romberg value, both rounded to 15 digits, the value of the quadrature sum is shown in bold-face.

When u and t5 are positive:

Table 6: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 0.5 = u.

N W ∑N(Φ|0.5, 0.5) EN(0.5, 0.5) REN(0.5, 0.5) SN(0.5, 0.5)

4 0.672618686869557 2.08901211543× 10−5 3.10569313327× 10−5 4.5
8 0.672639574765081 2.2256304× 10−9 3.10569313327× 10−9 8.4
12 0.672639576990494 2.172× 10−13 3.229× 10−13 12.4
15 0.672639576990712 −2× 10−15 3× 10−15 15.5

In W15, the extreme points are ±4.49999070730939 with weight 8.58964989963327× 10−10.

Table 7: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 1.0 = u.

N W ∑N(Φ|1.0, 1.0) EN(1.0, 1.0) REN(1.0, 1.0) SN(1.0, 1.0)

4 0.758944432021307 1.3055068852163× 10−3 1.7172074845465× 10−3 2.7
8 0.760251305281224 −1.3663747004× 10−6 1.7972703849× 10−6 5.7
12 0.760250049464872 −1.105583487× 10−7 1.454236865× 10−7 6.8
16 0.760249940494693 −1.5881696× 10−9 2.0890098× 10−9 8.6
20 0.760249938922564 −1.60404× 10−11 2.10989× 10−11 10.6
24 0.760249938906643 −1.196× 10−13 1.573× 10−13 12.8
28 0.760249938906524 −4× 10−16 6× 10−16 15.2

In W28, the extreme points are ±6.59160544236774 with weight 6.43254743880186× 10−20.
Note: Romberg value = 0.760249938906523 at relative tolerance 10−16 rounded to 15 digits.
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Table 8: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 2.0 = u.

N W ∑N(Φ|2.0, 2.0) EN(2.0, 2.0) REN(2.0, 2.0) SN(2.0, 2.0)

4 0.816631474537427 −2.1781592987761× 10−3 2.6743820155460× 10−3 2.5
8 0.818015114411898 −3.5617991732470× 10−3 4.3732392104063× 10−3 2.3
12 0.814804231765483 −3.509165268317× 10−4 4.308614382998× 10−4 3.3
16 0.814430926294541 2.23889441103× 10−5 2.74895364675× 10−5 4.5
20 0.814438558202192 1.47570364595× 10−5 1.81189470083× 10−5 4.7

24 0.814450180176825 3.1350618260× 10−6 3.8492836451× 10−6 5.4
28 0.814452900521139 4.147175118× 10−7 5.091974015× 10−7 6.2
32 0.814453293777743 2.14609082× 10−8 2.63500778× 10−8 7.5
36 0.814453322229591 −6.9909400× 10−9 8.5835981× 10−9 8
40 0.814453318135879 −2.8972278× 10−9 3.5572668× 10−9 8.4

44 0.814453315930169 −6.915176× 10−10 8.490576× 10−10 9
48 0.814453315365336 −1.266851× 10−10 1.555462× 10−10 9.8
52 0.814453315256783 −1.81315× 10−11 2.22622× 10−11 10.6
56 0.814453315240331 −1.6799× 10−12 2.0627× 10−12 11.6
60 0.814453315238586 6.56× 10−14 8.05× 10−14 13

64 0.814453315238569 8.20× 10−14 1.006× 10−13 12.9
68 0.814453315238625 2.61× 10−14 3.20× 10−14 13.4
72 0.814453315238645 6.2× 10−15 7.6× 10−15 14.1
76 0.814453315238650 1.2× 10−15 1.5× 10−15 14.8
78 0.814453315238651 5× 10−16 7× 10−16 15.1

In W78, the extreme points are ±11.7257979195159 with weight 7.6920667316977× 10−61.

When u is negative and t5 is positive:

Table 9: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 0.5 = −u.

N W ∑N(Φ| − 0.5, 0.5) EN(−0.5, 0.5) REN(−0.5, 0.5) SN(0.5, 0.5)

4 0.327381313130443 −2.08901211543× 10−5 6.38138262476× 10−5 4.1
8 0.327360425234919 −2.2256304× 10−9 6.7987154× 10−9 8.1

12 0.327360423009506 −2.172× 10−13 6.635× 10−13 12.1
15 0.327360423009288 2× 10−16 6× 10−16 15.2

In W15, the extreme points are ±4.49999070730939 with weight 8.58964989963327 × 10−10. Note:
Romberg value = 0.327360423009289 at relative tolerance 10−16 rounded to 15 digits.
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Table 10: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 1.0 = −u.

N W ∑N(Φ| − 1.0, 1.0) EN(−1.0, 1.0) REN(−1.0, 1.0) SN(1.0, 1.0)

4 0.241055567978693 −1.3055068852163× 10−3 5.4452828051931× 10−3 2.2
8 0.239748694718776 1.3663747004× 10−6 5.6991630956× 10−6 5.2

12 0.239749950535128 1.105583487× 10−7 4.611400232× 10−7 6.3
16 0.239750059505307 1.5881696× 10−9 6.6242717× 10−9 8.1
20 0.239750061077436 1.60404× 10−11 6.69048× 10−11 10.1
24 0.239750061093357 1.196× 10−13 4.988× 10−13 12.3
28 0.239750061093476 4× 10−16 1.8× 10−15 14.7
29 0.239750061093477 0 2× 10−16 15.6

In W29, the extreme points are ±6.72869519860885 with weight 1.02934180872194× 10−20.

Table 11: Accuracy of N-point adaptive Gauss-Hermite quadrature with parameters t5 = 2.0 = −u.

N H ∑N(Φ| − 2.0, 2.0) EN(−2.0, 2.0) REN(−2.0, 2.0) SN(2.0, 2.0)

4 0.183368525462573 2.1781592987761× 10−3 1.17391442567546× 10−2 1.9
8 0.181984885588102 3.5617991732470× 10−3 1.91962425943005× 10−2 1.7
12 0.185195768234517 3.509165268317× 10−4 1.8912573257942× 10−3 2.7
16 0.185569073705459 −2.23889441103× 10−5 1.206647488156× 10−4 3.9
20 0.185561441797808 −1.47570364595× 10−5 7.95327411995× 10−5 4

24 0.185549819823175 −3.1350618260× 10−6 1.68963505334× 10−5 4.7
28 0.185547099478861 −4.147175118× 10−7 2.2351114078× 10−6 5.6
32 0.185546706222257 −2.14609082× 10−8 1.156631186× 10−7 6.9
36 0.185546677770409 6.9909400× 10−9 3.76775258× 10−8 7.4
40 0.185546681864121 2.8972278× 10−9 1.56145489× 10−8 7.8

44 0.185546684069831 6.915176× 10−10 3.726921× 10−10 8.4
48 0.185546684634664 1.266851× 10−10 6.827669× 10−10 9.1
52 0.185546684743217 1.81315× 10−11 9.77195× 10−11 10
56 0.185546684759669 1.6799× 10−12 9.0540× 10−12 11
60 0.185546684761414 −6.56× 10−14 3.536× 10−13 12.4

64 0.185546684761431 −8.2× 10−14 4.417× 10−13 12.3
68 0.185546684761375 −2.61× 10−14 1.405× 10−13 12.8
72 0.185546684761355 −6.2× 10−15 3.33× 10−14 13.4
76 0.185546684761350 −1.2× 10−15 6.6× 10−15 14.1
80 0.185546684761349 −2× 10−16 1.1× 10−15 14.9
81 0.185546684761349 1× 10−16 7× 10−16 15.1

In W81, the extreme points are ±11.9681194448687 with weight 2.45280551389805× 10−63.
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E Details on the ML Program

We present details on the implementation of our program for the ML estimation (DDC-ML). The

program is written in C. In the DDC-ML program, all value functions are exactly calculated according

to the appropriate information set by use of backward induction. The program can simulate any model

it can estimate and vice-versa. After estimation, simulation can be used for goodness-of-fit testing and

counterfactual policy design.

The main task of the DDC-ML program is the maximization of the likelihood function defined in

equation (10). The DDC-ML program uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

(Press et al., 1992). We focus on four aspects of the numerical implementation that make the DDC-ML

program the benchmark for scientific computation: (1) accuracy of integration, (2) accuracy of normal

CDF evaluation, (3) overall precision, and (4) program flexibility.

E.1 Accuracy of Integration

The most important innovation of the DDC-ML program with respect to the current literature is the

possibility to specify a set of factors for the unobserved heterogeneity in earnings and cost equations.

The additional specification of a measurement system facilitates their meaningful interpretation.

The introduction of factors in the model adds the complication of integrating the entire likelihood

with respect to their distribution. Provided that a reliable estimator of the normal CDF is available,

complications arise as the support of the likelihood integral is potentially unbounded on the real line.

While the econometrician has control over the scaling of the covariates, there is no such control over

the standard deviation of the factor distribution which is updated at each step of the maximization

routine.

In the DDC-ML program, the default integration method is adaptive Gauss-Hermite quadrature.

This strategy is robust against the change of the integrand shape as the location of the quadrature

points is adapted at each iteration of the optimizer (Davis and Rabinowitz, 1984; Judd, 1998). In Web

Appendix D, we test the reliability of the Gauss-Hermite quadrature against the more accurate, but

more time consuming Romberg integration (Romberg, 1955). Overall, our investigation reveals 15
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digits of precision of a 40-point Gauss-Hermite quadrature in our model setup.

We use an additional defensive strategy. At each optimization step, we test the accuracy of integra-

tion for the particular values of structural parameters by the calculation of a test integral with known

value. We integrate a normal pdf (with all candidate standard deviations) over its full support and

expect a result very close to one. We test two alternative quadrature methods in the following order

until the required precision is achieved: (1) Gauss-Hermite, (2) Gauss-Legendre. If both fail, we use

Romberg integration and iterate until polynomial interpolation across successive interval partitions

achieves the requested precision.

E.2 Accuracy of Normal CDF Evaluation

The product of transition probabilities is a key element in the likelihood calculation. They char-

acterize the model’s dynamic structure. Their reliable calculation is necessary to ensure the overall

accuracy of our program. During optimization, normal CDF evaluations are potentially required any-

where on the real line. Small values for standard deviations σ̂ can have severe consequences. Let z

denote the index of observed characteristics in the transition probabilities. At each iteration the ar-

gument of the choice probability z
σ̂ can take an almost arbitrarily large magnitude. Positive ratios are

not a problem as Φ( z
σ̂ ) can be set to one without causing particular imprecision. However, negative

values are a problem because setting Φ( z
σ̂ ) = 0 is a non-trivial work-around as ln(Φ( z

σ̂ )) is needed in

the final likelihood calculation. In the DDC-ML program, the normal probability calculation is done

via the algorithm proposed by Marsaglia (2004) extended to C long double precision.3 This extended

Marsaglia algorithm allows calculation of the standard normal CDF on the domain [−150,+150] with

about 16 digits of precision, falling to about 15 digits near -150.

3This extended hardware precision is defined in two ways (compilers differ in their interpretation of the format): with 80
bits, precision of approximately 19 decimal digits, magnitude range around [10−4198, 10+4197]. With 128 bits (quad precision),
precision of approximately 34 decimal digits the magnitude range is unchanged.
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E.3 Overall Precision

The calculation of the objective function must be accurate enough so that changes in function values

between two points in the parameter space are sufficiently large. As the optimum is approached, the

difference in successive function values becomes smaller and smaller and the function values agree in

an increasing number of leading significant digits. Subtracting one from the other results in increas-

ingly lower-order digits. Low-order digits are the least accurate, but the sign of the difference must

be correct so that the optimizer’s updating step is correct. This problem worsens if the surface of the

likelihood function is nearly flat around the solution. Experience with our DDC-ML program shows

that our 15 digits precision in the likelihood function value is required for 3-digit precision in MLE

point estimates.

E.4 Program Flexibility

Estimation of complex structural models that are often characterized by hundreds of parameters is

a labor-intensive process. The ability of the econometrician to control every step of the estimation is a

key ingredient to a well designed program.

The DDC-ML program supports such a step-by-step sequence by reporting: (a) ultimately, a local

optimum for a defensible model with indicators of quality for the convergence such as condition num-

ber of the Hessian and test of accuracy of the integral calculations; (b) along the way of estimation,

failure to make progress to convergence with indicators of the problem(s), enhanced by a flexible spec-

ification syntax that enables the econometrician to easily adjust along the path model structure or data

or parameters governing the calculations (such as the maximum numbers of iterations to be taken,

the required norm of the gradient to claim convergence, the maximal step that the BFGS algorithm is

allowed to take, etc.) in response to diagnosis of indicated problems.

Estimation of flexibly defined dynamic discrete-choice models is beset with potential problems. A

well designed program must give to the econometrician the possibility to diagnose such problems

in order to properly address them. Many common problems are sample-size dependence, rare cells,

bad starting values, outlier agents, low data variability, poor data-scaling, unidentified structure, and
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many others. There is not a single well-defined dimension along which models can be ranked in terms

of the difficulty of their estimation. For example, a model specifying a small number of agent states is

typically untroubled by rare cells in the data, but if the model also specifies many latent factor effects,

then problems arise in sample-size dependence and low data-variability.

In the DDC-ML program, each problem manifests at a point in the sequence where details are dis-

played to support diagnosis, and easy-to-use syntax enables rapid trials of hypotheses for correcting

the problem. In particular, the DDC-ML program allows for (a) model specification and data syntax

checks for coherence in the specified model with the given data, (b) checks of potential causes (such

as bad starting values or empirical underidentification) which might cause singularity in the Hessian

matrix, (c) accuracy, logic, and data-preparation checks performed via a comparison between the cal-

culation of analytic and finite difference likelihood derivatives whose divergence is often due to prob-

lems (such as incorrectly scaled covariates), (d) early-stage estimation checks by initial low-ambition

trials of estimator progress. In each of the above sequenced steps, the program reports success or

reports problem indicators. To respond to problems, calculation results and accuracy indicators are

printed in detail, and every detail of configuration syntax and data file formats and structure (current

parameter vector and the BFGS approximation of the matrix of second derivatives) is viewable and

editable by the user (for example, to allow subsequent estimation of new parameters previously fixed

at a given value).

Once estimation is underway, the sequence can be fine-grained under control from the econometri-

cian. The econometrician can then judge the quality of the progress of the estimation step by step by

using all indicators of potential problems offered by the program. Details of judgment and proper use

of the program from the econometrician arising in this fine-grained realm are numerous; the totality

of them defines a craft, an art, a style of dynamic discrete choice model estimation. That sequence

stands in stark contrast to a push-button one-step concept that is pass/fail for convergence and too

often, in practice, positions the user with little ability to judge quality (accuracy and precision) of esti-

mation results (point and interval estimates) and little diagnostic support for estimation failure. This

last point is crucial, as it is a fundamental characteristic of the estimation of complex structural mod-

els. As much as the economist’s judgment is required in evaluating each modeling assumption, the

economist’s and programmer’s judgment are also of crucial importance in the process of estimation.
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The evaluation of a converging estimation run might only partially rely on objective measures such

as condition numbers. The best evaluation comes from the econometrician’s judgment who can eval-

uate if the estimator path was solid enough to trust the obtained results. For these reasons, it is often

extremely hard to perform multiple serial runs of estimation (as would be required for a bootstrap

exercise for example) not only because each of these runs often takes a long time, but because each of

them cannot be automatized and requires the econometrician’s judgment to evaluate its reliability.
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