INVENTORY OF SUPPLEMENTAL INFORMATION

Figure S1, related to Figure 1. *Phenotypes observed during primary and secondary screening.*

Figure S2, related to Figure 2. *IFT-A phenotypes in adult flies, and measure of RNAi efficiency.*

Figure S3, related to Figure 3. Analyses of homozygous clones of IFT-A mutants.

Figure S4, related to Figure 4. In vivo epistasis experiments.

Figure S5, related to Figure 5. *Rescue of adult viability of Axin KD flies by IFT-A KD and Axn*^{E77} *MARCM clones.*

Figure S6, related to Figure 6. *Line scan quantification of cytoplasmic Arm levels in IFT-A KD and colocalization plots of IFT-A and Arm.*

Table S1, related to Table 1. Adult phenotypes observed for each RNAi knockdown in theprimary screen.

Experimental procedures. Antibodies, Transgenic flies and plasmids pUASt-IFT122-myc and pUASt-IFT43-myc, CRISPR mutant oseg4

References

Figure S1, related to Figure 1.

Phenotypes observed during primary and secondary screening.

(A-B) Examples of phenotypes of the primary screen: adult wings are oriented proximal to the left and anterior up; thorax orientation is anterior up.

(A) Examples of phenotypes observed in each category in the wing using *nubGal4* (*nub>*, expressed in the entire wing, domain highlighted in green in upper left panel) and *enGal4* (*en>*, expressed in the posterior compartment, highlighted in green in lower left panel), black arrowheads point toward notches; high magnification inserts in right most panels show examples of multiple cellular hair (mch) phenotypes (indicated by black square in full wing view). (B) Examples of phenotypes observed for each category in the thorax using *apGal4* (*ap>*, expressed in the entire notum).

(C) Phenotypes induced by knockdown of components of the different developmental signaling pathways using *nub*>, black arrowheads point toward notches, square in fz/fz^2 KD panel indicates area shown at high magnification next to the image displaying mch phenotypes (white arrowhead).

(**D-I**) Examples of phenotypes observed in the secondary screen, wing discs are oriented anterior left and dorsal up. (**D**) Wt patterns of Sens (red, monochrome in **D'**) and Wg (blue, monochrome in **D"**), used as markers for activation of canonical Wg and Notch pathways, respectively, in flies expressing GFP under the control of *en>*. (**E-F**) Examples of CG5780-IR leading to disruption of Sens expression only (**E**), and CG14617-IR disrupting both Wg and Sens induction (**F**). (**G**) Wt pattern of the EGFR signaling as reported by *aos-lacZ* (green, monochrome in **G'**) in flies expressing *apGal4*, Wg staining (red) is used to delimit the dorsal compartment (where *ap>* is expressed) and the wt ventral compartment. (**H**) Loss of EGFR via RNAi leads to loss of *aos-lacZ* expression in the dorsal compartment. (**I**) Example of RNAi against CG6560 causing an increase in *aos-lacZ* expression in our secondary screen. Scale bars in (**D**, **G**) represent 25µm.

Figure S2, related to Figure 2

Ρ			CONTROLS		IFT-A KD					
HEDGEH	OG PATHWAY	w1118	Smo-IR Ptc-IR		IFT121-IR	IFT122-IR	IFT140-IR	IFT43-IR	IFT144-IR	
ansGER	Ptc staining	no effect	downregulation downregulation		no effect	no effect	no effect	no effect	no effect	
ap>drP	Ci Staining	no effect	downregulation	upregulation	no effect	no effect	no effect	no effect	no effect	
NOTCH	I PATHWAY	w1118	Notc	h-IR	R IFT121-IR IFT122-IR IFT140-IR IFT43		IFT43-IR	IFT144-IR		
on>der2	Wg staining	no effect	downregulation		no effect no effect		no effect	no effect	no effect	
enzuciz	NRE-GFP reporter	no effect	downregulation		no effect	no effect	no effect	no effect	no effect	
EGF PATHWAY		w1118	EGFR-IR		IFT121-IR IFT122-IR		IFT140-IR	IFT43-IR	IFT144-IR	
ap>	Aos-lacZ reporter	no effect	downreg	gulation	no effect	no effect	no effect	no effect	no effect	

IFT-A phenotypes in adult flies, and measure of RNAi efficiency.

(**A-J**) Adult wing phenotypes induced by IFT-A component knockdowns via RNAi (IR) (n=30 per genotype). Percentages in upper right corner correspond to the percentage of flies observed with phenotype different from *wt* control wings in each experiment.

(A-E) *en*-driven *IFT122*-IR (A), *IFT140*-IR (B), *IFT121*-IR (C) and *IFT43*-IR (D) induce margin defects, as exemplified by notches and/or loss of wing margin bristles (black arrowheads) and weak growth and vein defects, *IFT144*-IR (E) resembles *wt* (100%). (F-J) *nub*-driven *IFT122*-IR (F) displays growth defects and *IFT140*-IR (G), *IFT121*-IR (H), and *IFT43*-IR (I) knockdowns show notches (black arrowheads) and growth defects, *nub*>*IFT144*-IR again resembles *wt* (J). (K-O) The respective IFT-A knockdowns in the thorax using *apGal4* resemble wild-type.

(**P**) Summary table of the different molecular target genes tested for the respective developmental signaling pathway, as indicated on left. In addition to testing Ptc and Wg staining in the secondary screen, IFT-A KD showed no effect on Ci (Hh signaling) and *NRE-GFP* (Notch signaling), compared to the controls. (**Q**) Wt expression patterns of Ci and Ptc and (**R**) *NRE-GFP*.

(**S**) Western Blot of 3rd instar wing disc lysates of IFT121-GFP and IFT144-GFP in a *wt* background, and the respective RNAi conditions as indicated showing specific silencing of each RNAi line for the respective IFT-A component (n=50 wing discs/genotype, experiment was repeated twice with the same result). *nub-Gal4* was used to express the GFP-tagged IFT-A proteins throughout wing discs, either alone or in combination with the respective RNAi construct (as indicated), and changes in protein levels were monitored. RNAi targeting of both genes reduced their protein expression to barely detectable levels, indicating that IFT144 is efficiently silenced.

Figure S3, related to Figure 3.

Analyses of homozygous clones of IFT-A mutants.

(A-B) Expression of Wg signaling targets Sens and Dll is reduced in *IFT122/oseg1*¹⁷⁹ mutant cells, whereas expression of the Notch target Wg remains unaffected. (A) IFT122/oseg1179 cells (marked by absence of GFP) display reduced levels of nuclear Sens (red, monochrome in A'; nuclei are counterstained with Dapi: blue, monochrome in A"). Quantification line profiling in A''' (line profile/image field as indicated in A). (B-C) Other signaling pathways are not disrupted by loss of *IFT122*. (B) Notch signaling is unaffected in *IFT122/oseg1*¹⁷⁹ (marked by absence of GFP). (**B**") Line scan of Wg staining, note that Wg expression is not affected within the *IFT122* mutant cells (borders of mutant clone are indicated by black arrowheads above line scan; note loss of GFP in area between arrowheads). (C) Hedgehog pathway activity, as indicated by Ptc expression (red in **C**, monochrome in **C**", note mutant clone within the Ptc expression domain), remains unchanged in IFT122 mutant cells. (C-D') Cleaved Casp3 staining (blue in **C** and **D**; monochrome in **C'** and **D'**) in *IFT122* and *IFT140* mutant cells, respectively (genotypes and other labels as indicated). Panel **D** shows same wing area as in **Fig. 3C** in main text. Cleaved Caspase3 staining is occasionally detected in cells at the borders of mutant clones, similar to observations in Wg pathway mutant clones (see main text for reference to previous Wg-signaling studies).

(E-F) *IFT140/rempA*^{21Ci} clones (F-F') in adult wings show disruption of the margin bristle pattern, compared to the control wing (E-E'), yellow rectangles in **E** and **F** indicate higher magnification field of the wing margin shown in **E'** and **F'**.

(G) Schematic representation of the strategy and sequence analysis of CRISPR generated *IFT121/oseg4* mutant lines. Allele/line 3b contains a deletion of exon 3 to exon 8 and insertion of few nucleotides at the breakpoint during DNA repair induced a frameshift and early stop codon in exon 8. Mutant allele/line 4b contains a deletion of exon 3 to exon 5 and insertion of few nucleotides at the breakpoint during DNA repair induced a frameshift and early stop codon in exon 5.

(**H-J**) *IFT121/oseg4*^{3b} (**I**) and *IFT121/oseg4*^{4b} (**J**) homozygous adult flies show mild disruptions at the wing margin (black arrowheads), compared to *wt* wing (**H**), yellow rectangles indicate higher magnification fields shown in **H'** and **I'**.

Figure S4, related to Figure 4.

In vivo epistasis experiments.

(**A-L**) Co-expression of UAS-Fz2-Arr and IFT-A RNAis using *enGal4* in 3rd instar wing discs and adult wings.

(A) Extra Sens positive cells (red, monochrome in A', A") are observed in the posterior compartment of *en>Fz2-Arr-myc* expressing 3rd instar wing discs (examples indicated with white arrowheads), GFP (green) and Fz-Arr (blue, marked with anti-myc) expression indicate the posterior compartment. White square (A') delimits the area shown at high magnification in A". (B-F) The induction of extra Sens positive cells is suppressed by *IFT122-IR* (B-B"), *IFT140-IR* (C-C"), *IFT121-IR* (D-D") and *IFT43-IR* (E-E") knockdowns, but not by *IFT144-IR* (F-F") (n≥20 per genotype). (G) In adult wings, the induction of extra Sens positive cells is reflected by the formation of extra margin bristles on the wing blade in the posterior compartment of Fz2-Arr expressing flies, black square indicates the areas shown at high magnification in main text **Figure 4A-F**.

(H-L) Formation of extra bristles is suppressed by the RNAi-based silencing of IFT122 (H), IFT140 (I), IFT121 (J), and IFT43 (K), but not IFT144 (L), correlating with Sens staining in larval wing discs. Note the resemblance between the morphology of the posterior compartment in IFT-A RNAi alone (Figure S2A-D) or in combination with Fz2-Arr (H-K), indicating that IFT-A components act downstream of the receptor complex. Quantification of the extra bristle phenotype is shown in main text Figure 4G.

(**M-S**) Adult wing images of *C96>ArmS10* alone (**M**; box indicates area used for quantification and shown at higher magnification in main text **Figure 4H-M**) or together with KD of *IFT-122* (**N**), *IFT140* (**O**), *IFT121* (**P**), *IFT43* (**Q**), *IFT144* (**R**, shown at high magnification in **R'**), and TCF^{DN} (**S**). IFT-A KDs do not suppress the extra-bristle phenotype induced by the expression of ArmS10, whereas TCF^{DN} does.

Figure S5, related to Figure 5.

Rescue of adult viability of Axin KD flies by IFT-A KD and Axn^{E77} MARCM clones.

(**A-D**) *Axin*-IR adult viability is rescued to almost *wt* when co-expressed with *IFT122*-IR (**A**), *IFT140*-IR (**B**), *IFT121*-IR (**C**), and *IFT43*-IR (**D**)(all expressed under *en-Gal4* control).

(E-E') Overactivation of Dll expression (red, monochrome in E') is rescued in *IFT140/rempA*^{21Ci}, axn^{E77} double mutant clones (marked by absence of GFP; similarly to Sens (Fig. 5H")), when compared to axn^{E77} single mutant clones. Note that only double mutant clones lack GFP, single mutant axn^{E77} clones show increased Dll expression, while single mutant *IFT140/rempA*^{21Ci} clones show reduced Dll levels.

(**F-F'**) *axn*^{E77} MARCM clones (marked by GFP expression) display overactivation of Sens (magenta, monochrome in **F'**).

(**G-G**^{""}) Cleaved-Caspase3 staining (red, monochrome in **G**') and Sens staining (blue, monochrome in **G**") in *IFT140/rempA*^{21Ci}, axn^{E77} double mutant clones; note that Sens overactivation is suppressed in cells of the double mutant clone (outlined with yellow line in **G'-G**^{""}; Dapi stains all nuclei in **G**^{""}).

Figure S6, related to Figure 6

Line scan quantification of cytoplasmic Arm levels in IFT-A KD and colocalization plots of IFT-A and Arm

(A) Wt pattern of Sens (red) in flies expressing *nub>dcr2*. (B) Ectopic Sens positive cells are induced by *nub*-driven *Axin*-IR mediated KD, compared to *wt* in A (note that the effect is milder than with *en-Gal4* (main text Fig. 5A) and Sens is not activated in all cells of the wing pouch expressing *nub*. (C-D). Suppression of ectopic Sens positive cell phenotype in *nub*-driven *Axin*-IR KD with co-expression of RNAi to *IFT122* (C) or *IFT121* (D).

(E-G) Quantification of cytoplasmic Arm levels. Confocal images in E-G are the same as in the main text Fig. 6C'-E'. Yellow lines indicate the line scan plotted in E'-G'. Note that peaks of cytoplasmic Arm are reduced in posterior GFP-positive regions (respectively IFT140 KD in F' and IFT43 KD in G') compared to the anterior GFP-negative region and to the *wt* control in E'.

(H-I) Confocal scans of apical and subapical planes of *tub*-driven expression of IFT122-myc (H-H') and IFT43-myc (I-I') (green) and Arm (magenta; note that Arm staining labels the junctions in the apical planes and shows a punctate distribution in subapical areas, wing disc areas are the same as shown in main text **Fig. 6H-I**). White line indicates region/line shown in line plot of fluorescence intensity in H" and I", note that several peaks of Arm and IFT-A-myc staining are superimposed, indicating that both proteins can colocalize.

Table S1, related to Table 1.

Vertebrate	Drosophila	RNAi line #	Phenoty	pic classes	Additional RNAi
gene name	ortholog		WING	THORAX	line #
BBS1	CG14825. BBS1	^v 109623	wt	wt	NA
BBS3, ARL6	CG7735	^v 104462	growth, notch, vein	wt	^v 43508
BBS4	CG13232, BBS4	^v 100571	growth, notch, mch	wt	^v 28772
BBS5	CG1126	^v 18200	growth	loss	NA
BBS8	CG13691, BBS8	^v 32058	wt	wt	NA
BBS9	CG15666	^v 40013	growth (notch)	wt	^v 110798
MKS1	CG15730	^v 19582	wt	wt	^v 19583
MKS3	CG15923	^v 37373; ^{MS} 54	growth, vein, mch	excess	^v 107011
TCTN1/2/3	CG42731, tectonic	^v 107952	wt	other	NA
B9D1	CG14870	^v 107330	growth	other	^v 46307
B9D2	CG42730	^v 40858	wt	wt	NA
NPHP6.CEP290	CG13889	NA			
NPHP9, NEK8	CG10951, niki	^v 100823	wt	wt	^v 16120
CC2D2A, CEP76	CG18631	^v 100302	vein	Lethal	^v 47215
IFT20	CG30441	^v 106811	wt	wt	^v 50583
IFT46	CG15161	^d 15161R-1	Growth	wt	^v 25198
IFT52	CG9595. osm-6	^v 24068	wt	wt	NA
IFT54	CG3259	^v 46163	Growth, yein	(loss)	NA
IFT57	CG8853, che-13	^v 106927	wt	wt	^v 51323
IFT70. FLEER	CG5142	^v 22015	growth, vein, mch	(misoriented, loss)	^v 110166
IFT80	CG9333 Oseg5	^v 100020	growth vein notch	loss	^v 52551
IFT88	CG12548, nompB	^v 104419	wt	lethal	^t IF0380
IFT172	CG13809. osm-1	^v 107157	growth, vein, notch, mch	(loss)	^v 24795
KIF3A	CG10642 KIn64D	^v 103358	wt	lethal	^v 45373
KIF3B	CG7293, Klp68D	^t IF03346	growth, vein (notch)	(misoriented)	¹ 101058
KIF17	CG17461, Kif3C	^v 43641	wt	wt	NA
KIFAP3	CG11759, Kap3	^v 103548	vein (notch)	wt	^v 45400
IFT121, WDR35	CG2069. oseg4	^v 109805	Vein, notch	(misoriented)	^v 43380
IFT122	CG7161. oseg1	^v 103598	growth, vein	wt	^d 7161R-1
IFT140	CG11838. rempA	^v 31575	growth (notch)	wt	^v 103424
IFT144, WDR19	CG11237. oseg6	^v 38462	wt	wt	^t GLC01452
IFT43	CG5780	^v 106366	growth, vein, notch	wt	NA
DYNCH2H1	CG15148. btv	^t JF03010	Growth, vein	misoriented	^v 105152
DYNC2111	CG3769	^v 40469	blister	wt	^v 109621
DYNLL1	CG6998. ctp	^v 109084	growth (notch)	misoriented, loss (other)	^v 43116
ARL13B	CG11356	^v 33812	notch	wt	NA
PKD2	CG6504, pkd2	^v 110681	wt	wt	^t JF01468
OFD1	CG1501, unc	^t JF03403	growth	wt	NA
TULP3	CG9398, king-tubby	^v 29110	vein	wt	NA
CCDC104	CG14367	^v 100799	notch	(loss)	NA
EFHC1	CG11048. Efch1.2	^v 106676	wt	wt	^v 31407
CLUAP1	CG17599	^v 14682	growth	loss. misoriented	^d 17599R-1
TTC26	CG4525	^v 107708	vein	misoriented	^d 4525R-2
CEP164	CG9170	^v 108727	wt	wt	^v 29066
EB1	CG3265. Eb1	^v 24451	vein	misoriented. loss	^t HM05093
IMPORTIN β	CG2637. Fs(2)ket	^v 107622	Lethal	Lethal	^t JF01755
RFX	CG6312, rfx	^v 10416	growth, mch	wt	^t JF02518
Pericentrin	CG33957, cp309	[*] 100969	growth	misoriented	^v 101645
SAS-6	CG15524, sas-6	[*] 25073	vein	loss	^v 110149
ROOTLETIN	CG6129, rootletin	^d 6129R-1	growth. vein	loss. other	^v 110171
ARL3	CG6560, dnd	^v 104311	growth, vein, mch. notch	loss, misoriented	^t JF02638
RAB8	CG8287, rab8	^v 28092	wt	wt	^t JF02669
L ·····			1 1		

Adult phenotypes observed for each RNAi knockdown in the primary screen.

LRCC16A	CG1399		^v 24826		wt		w	t	NA	
OSCP1	CG13178		^v 110148		wt		(m	nisoriented, loss)	^v 44816	
CEP192	CG17286, spd-2		^v 36623		vein		w	t	^v 101882	
CEP152	CG2919, asl		^v 25457		wt		(lo	oss)	^t HMS01463	
γ-TUBULIN	CG17566, γ-Tub37C		^v 109921		wt		w	t	^t HMS00517	
SAK/PLK4	CG7186, Sak		°1(^v 105102 (v		ein)		t	^v 27904	
SAS-4	CG	610061, sas-4	°10	^v 106051 g		growth (notch) (nisoriented, loss)	^t HMS01463	
CP110	CG	614617, cp110	^v 101161		notch		ot	her	^v 24874	
CENTRIN	CG	617493	^v 40080 w		wt	v		t	NA	
CEP135	CG	CG17081, cep135		^v 14194 wt			lo	SS	NA	
TEKT1	CG	610541, tektin-C	^v 100094 letha		lethal		lethal		^v 31253	
Developmental pathway specific controls										
	Fri	zzled/Frizzled2	^v 43075; ^t JF01259		growth, notch, mch		m	isoriented		
	Notch		^v 27228		growt	growth, notch, vein		ss/excess		
	Smoothened		^t JF02363		growth, vein		W	t		
	EGFR		^t JF01368		growth, vein		ot	her		
	Thickvein		^t JF01486		growth, vein		w	t		
Cilia-associated genes not considered in our study as their degree of conservation was not determined by standard sequence										
alignments using NCBI protein blast										
BBS2		BBS6		BBS7		BBS10		BBS11	BBS12	
NPHP1		NPHP3		NPHP4		NPHP5		NPHP7, GLIS2	NPHP8, RPGRIP1L	
AHI1		IFT22		IFT25/HSBP11		IFT27		IFT71/72/74	IFT81	
IFT139		WDR34		PKD1		PKHD1		OFD2	ALSM1	
STIL		PCM-1		FAPP2		δ-TUBULIN		CENTROBIN	KIF24	
Cilia-associated genes with known functions in developmental pathways (vertebrate gene / Drosophila ortholog)										
NPHP2, INVERSIN / CG12342, Dgo				FUZ / CG13396, Fuzzy			aPKC / CG10261, aPKC			
KIF7 / CG1708, Costal-2				PAR3 / CG5055, Bazooka			CRB3 / CG6383, Crumbs			
INTU / CG16993, Inturned				PAR6 / CG5884, PAR6			GSK3β / CG2621, Shaggy			

Bold+Italic confirmed with independent RNAi line, **Bold** confirmed with overlapping RNAi line, *Italic* not confirmed by 2^{nd} RNAi line, NA: not available, () penetrance less than 50%, mch stands for multiple cellular hairs, ^v vdrc collection, ^d dgrc kyoto collection, ^t trip collection, ^{MS} made in our lab

Experimental procedures

Antibodies

For tissue staining, primary antibodies include guinea pig anti-Senseless (1:500, gift from H. Bellen), mouse anti-Wingless (1:500, DSHB 4D4 concentrate), mouse anti-Armadillo (1:10, DSHB 7A1), rat anti-DE-cad (DSHB DCAD2), rat anti-Distalless (1:250, (Wu and Cohen, 2000), mouse anti-myc (1:200, Santa Cruz, 9E10), rabbit anti-myc (1:200, Santa Cruz, d1-717), mouse anti-Ptc (1:50, DSHB 5E10), rat anti-Ci (1:500, DSHB 2A1 concentrate), rabbit anti-beta-galactosidase (1:500, Molecular Probes A11132), mouse anti-acetylated tubulin (1:2, gift from C. Iomini). For immunoblotting, the following primary antibodies were used: mouse anti-Armadillo (1:1000, DSHB 7A1), mouse anti- γ -tubulin (1:1000, Sigma), mouse anti-GFP (1:1000, Roche), rabbit anti-cleaved Caspase-3 (D175, Cell Signaling). Fluorescent secondary antibodies and HRP-coupled secondary antibodies were from Jackson Laboratories.

Transgenic flies and plasmids pUASt-IFT122-myc and pUASt-IFT43-myc

To generate UAS-IFT122-myc transgenic flies, Myc tag was added to the C-term of IFT122 sequence by PCR amplification using DGRC SD05642 cDNA clone and cloned into pUASt vector using NotI and XbaI sites. The following primers were used: 5'-GCGGCCGCTATGAGGGGTGTTCTCAAGTGG-3' and 5'-GCTCTAGACTACAGATCTTCTTCAGAAATAAGTTTTTGTTCAAAGTCTTCCATCAGCTTTCGG-3'.

To generate UAS-IFT43-myc transgenic flies, Myc tag was added to the C-term of IFT43myc sequence by PCR amplification using DGRC SD05240 cDNA clone and cloned into pUASt vector using NotI and XbaI sites. The following primers were used: 5'-GCGGCCGCTATGGACTGGGCCGAAGAAC-3' and 5'-GCTCTAGACTACAGATCTTCTTCAGAAATAAGTTTTTGTTCAGTATATTGTGTGGGGTGGAATC-3'.

CRISPR mutant oseg4

We used the protocols from (Kondo and Ueda, 2013) to construct a double-gRNA vector. The primers used to insert gRNA into pBFv-U6.2B were: U6.2-oseg4-ex3-1F 5'-5'-CTTCGTACAGATGACACTCCCCGT-3', U6.2-oseg4-ex3-1R AAACACGGGGGAGTGTCATCTGTAC-3', U6.2B-oseg4-ex8-1F 5'-CTTCGCGGAGATATCAGCCTTCTA-3' U6.2B-oseg4-ex8-1R 5'and AAACTAGAAGGCTGATATCTCCGC-3'. This construct was then injected in the TBX-0002 $y^1 v^1 P\{nos-phiC31 \mid int.NLS\}X; attP40$ fly stock and crossed with CAS-0002 $y^2 cho^2 v^1 P\{nos-phiC31 \mid int.NLS\}X$ Cas9, y+, v+}1A/FM7c, KrGAL4 UAS-GFP for generation of CRISPR mutant. Mutants were selected by non lethal genotyping (Carvalho et al., 2009) and amplification of the targeted region by PCR.

References

Carvalho, G.B., Ja, W.W., and Benzer, S. (2009). Non-lethal PCR genotyping of single Drosophila. BioTechniques *46*, 312–314.

Kondo, S., and Ueda, R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics *195*, 715–721.

Wu, J., and Cohen, S.M. (2000). Proximal distal axis formation in the Drosophila leg: distinct functions of teashirt and homothorax in the proximal leg. Mechanisms of Development *94*, 47–56.