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Braket Notation

In the main text, we used

x · y = xTy

to denote the inner product between two column vectors, and

x⊗ y = xyT

to denote the outer product. However, in what follows, it is very useful to use bra-ket

notation to follow the algebraic steps that arrive at the ktICA solution. Therefore, below:

〈x| y〉 = x · y = xTy

denotes the inner product, while the outer product is written as:

|x〉 〈y| = x⊗ y = xyT

Maximum Likelihood Estimator for tICA Matrices

If |xt〉 is a Markov chain in phase space, then the time-lag correlation, C(τ), and covariance,

Σ, matrices are defined as:

C(τ) = E
[
|δxt〉 〈δxt+τ |

]
(1)

Σ = E
[
|δxt〉 〈δxt|

]
(2)

where |δxt〉 = |xt〉 − |µ〉 and µ = E
[
|xt〉

]
.

To use the tICA method, we must construct estimators for µ, Σ, and C(τ) given finite

samples of the Markov chain. Importantly, the time-lag correlation matrix should be sym-

metric since the dynamics are reversible, but this may not be the case if only a sample mean

2



is used. The simplest approach we can take is to use a maximum likelihood estimator, where

we assume the data is distributed according to a multivariate normal distribution.

We assume that we are givenM pairs of transitions separated in time by τ ,
{

(|Xt〉 , |Yt〉)
}M
t=1

.

Define a new variable, |Zt〉, which is the concatenation of |Xt〉 and |Yt〉:

|Zt〉 =

 |Xt〉

|Yt〉


Then we will assume that these variables are distributed according to a multivariate normal

with covariance matrix, S equal to:

S =

 Σ C(τ)

C(τ) Σ


and mean given by:

|m〉 =

 |µ〉
|µ〉


Then the probability density at |z〉 can be written as:

p
(
|z〉
∣∣∣S, µ) = (2π)−

d
2 |S|−

1
2 exp

[
−1

2

(
〈z| − 〈m|

)
S−1

(
|z〉 − |m〉

)]

where d is twice the dimension of phase space.

Using this distribution, we can write the log-likelihood of the observed transitions, given

the model:

logL =
M∑
t=1

[
−d

2
log 2π − 1

2
log |S| − 1

2

(
〈Zt| − 〈m|

)
S−1

(
|Zt〉 − |m〉

)]
(3)

Using the properties of the matrix differential, it can be shown that the total differential of

the log-likelihood is:
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d logL =− M

2
tr(S−1dS)

− 1

2

M∑
t=1

tr
[
2S−1

(
|Zt〉 − |m〉

)
d 〈m|

]
− 1

2

M∑
t=1

tr
[
S−1

(
|Zt〉 − |m〉

)(
〈Zt| − 〈m|

)
S−1dS

] (4)

We could rewrite this total differential in terms of |µ〉, C(τ), and Σ, but it’s more convenient

to use the method of Lagrange multipliers to constrain the solutions, S and |m〉. Let R be

a block rotation matrix:

R =

 0 I

I 0


It’s easy to show that:

R

 A B

C D

R =

 D C

B A


and

R

 A

B

 =

 B

A

 ,
therefore the constraints we need to impose are:

RSR = S and R |m〉 = |m〉 .

We can then construct the Lagrange function:

Λ = logL+ 〈λ|
(
R |m〉 − |m〉

)
+
∑
i

∑
j

φij[RSR− S]ij

The total differential of Λ can then be written:
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dΛ = tr
[(
−

M∑
t=1

S−1
(
|Zt〉 − |m〉

)
+ (R− I) |λ〉

)
d 〈m|

]
+ tr

[(
−M

2
S−1 − 1

2

M∑
t=1

S−1
(
|Zt〉 − |m〉

)(
〈Zt| − 〈m|

)
S−1 + (RΦR− Φ)

)
dS

]

+ tr
[(
R |m〉 − |m〉

)
d 〈λ|

]
+ tr

[(
RSR− S

)
dΦ
]

(5)

The total differential is zero exactly when the terms multiplying dS and d |m〉 are zero. First,

we solve for |m〉:

−
M∑
t=1

S−1
(
|Zt〉 − |m〉

)
+ (R− I) |λ〉 = 0(

M∑
t=1

|Zt〉

)
−M |m〉 = S(R− I) |λ〉

Now, we add this equation to itself, but multiplied (from the left) by R:

[(
M∑
t=1

|Zt〉

)
−M |m〉

]
+R

[(
M∑
t=1

|Zt〉

)
−M |m〉

]
=
[
S(R− I) |λ〉

]
+R

[
S(R− I) |λ〉

]
(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 = (SR− S +RSR−RS) |λ〉(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 =

[
(SR−RS) + (RSR− S)

]
|λ〉(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 = 0

|m〉 =
1

2M

M∑
t=1

|Zt〉+R |Zt〉
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We can then solve for S.

−M
2
S−1 − 1

2

M∑
t=1

S−1 |δZt〉 〈δZt|S−1 + (RΦR− Φ) = 0

M

2
S +

1

2

M∑
t=1

|δZt〉 〈δZt| = S(RΦR− Φ)S

Now, add this equation to itself, but multiplied by R from the left and the right.

M

2
S +

1

2

M∑
t=1

|δZt〉 〈δZt|+R

(
M

2
S +

M∑
t=1

|δZt〉 〈δZt|

)
R

= S(RΦR− Φ)S +R

(
S(RΦR− Φ)S

)
R

MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

= SRΦRS − SΦS +RSRΦRSR−RSΦSR

MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

=
(
SRΦRS −RSΦSR

)
+
(
RSRΦRSR− SΦS

)
MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

= 0

S =
1

2M

M∑
t=1

(
|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

These solutions mean that the maximum likelihood estimators for |µ〉, Σ, and C(τ) are:

|µmle〉 =
1

2N

N∑
t=1

(
|δXt〉+ |δYt〉

)
(6)

Σmle =
1

2N

N∑
t=1

(
|δXt〉 〈δXt|+ |δYt〉 〈δYt|

)
(7)
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C
(τ)
mle =

1

2N

N∑
t=1

(
|δXt〉 〈δYt|+ |δYt〉 〈δXt|

)
(8)

Although, the MVN assumption is very crude, these estimators have two desirable properties:

1. C(τ) is always symmetric. Since the dynamics are reversible, the true time-lag correla-

tion matrix is symmetric.

2. The Rayleigh quotient:

〈v|C(τ)
mle |v〉

〈v|Σmle |v〉

is always in [−1, 1] (as long as Σmle is positive definite), which ensures that the eigen-

values from tICA are always real, and can be interpreted as timescales. This is because:

∣∣∣∣∣ 1

2M

M∑
t=1

〈v| δXt〉 〈δYt| v〉+ 〈v| δYt〉 〈δXt| v〉

∣∣∣∣∣ ≤∣∣∣∣∣ 1

2M

M∑
t=1

〈v| δXt〉 〈δXt| v〉+ 〈v| δYt〉 〈δYt| v〉

∣∣∣∣∣
which follows from the Cauchy-Schwarz inequality.

tICA Solutions are in the Span of the Input Data

The solutions to the tICA problem satisfy:

C(τ) |v〉 = λΣ |v〉
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Since Σ is positive definite, it is also nonsingular and so we can write:

|v〉 =
1

λ
Σ−1C(τ) |v〉

=
1

2Mλ
Σ−1

M∑
t=1

(
〈Φ(Xt)| v〉

)
|Φ(Yt)〉+

(
〈Φ(Yt)| v〉

)
|Φ(Xt)〉

:=
1

2Mλ
Σ−1 |x〉

where we’ve defined |x〉 to be the sum from the equation above. We know the covariance

matrix can also be diagonalized by a unitary matrix, P :

Σ = PΛP T =
[
|p1〉 |p2〉 . . . |pd〉

]


λ1 0 . . . 0

0 λ2 0 . . .

...

0 0 . . . λd





〈p1|

〈p2|
...

〈pd|


where |pi〉 is an eigenvector of Σ and λi is its eigenvalue. It’s easy to show that the eigen-

vectors of Σ are in the span of the |Xt〉’s and |Yt〉’s. Using the decomposition above, we can

rewrite the tICA solution in terms of a linear combination of the eigenvectors of Σ:

|v〉 =
1

2Mλ
PΛ−1P T |x〉

=
1

2Mλ

[
|p1〉 |p2〉 . . . |pd〉

]
Λ−1



〈p1| x〉

〈p2| x〉
...

〈pd| x〉


=

1

2Mλ

d∑
i=1

(
λ−1
i 〈pi| x〉

)
|pi〉
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which means that |v〉 is in the span of the eigenvectors of Σ. Since the eigenvectors of Σ are

all in the span of the data, |v〉 is also in the span of the |Xt〉’s and |Yt〉’s.

Derivation of the ktICA Solution

From the main text, recall that we are trying to rewrite the numerator and denominator of

the tICA objective function in Eq. (9).

f
(
|v〉
)

=
〈v|C(τ) |v〉
〈v|Σ |v〉

(9)

As shown above, the solution |v〉 is in the span of the input data, so let β be the length 2M

vector of coefficients such that:

|v〉 =
M∑
t=1

βi |Φ(Xt)〉+ βi+M |Φ(Yt)〉 (10)
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Now, we need to simply expand the numerate and denominator of Eq. (9) in terms of the

elements of β.

〈v|C(τ) |v〉 =
1

2M

M∑
t=1

〈v| Φ(Xt)〉 〈Φ(Yt)| v〉

+ 〈v| Φ(Yt)〉 〈Φ(Xt)| v〉

=
1

2M

M∑
t=1

(
M∑
i=1

[
βiK

XX
it + βi+MK

Y X
it

]
M∑
j=1

[
βjK

Y X
tj + βj+MK

Y Y
tj

]

+
M∑
i=1

[
βiK

XY
it + βi+MK

Y Y
it

]
M∑
j=1

[
βjK

XX
tj + βj+MK

XY
tj

])

=
1

2M

M∑
t=1

βT
 KXX

KY X



t

[(
KY X KY Y

)
β

]
t

+

βT
 KXY

KY Y



t

[(
KXX KXY

)
β

]
t

=
1

2M
βT


 KXX

KY X

( KY X KY Y

)
+

 KXY

KY Y

( KXX KXY

) β

=
1

2M
βT


KXXKY X +KXYKXX KXXKY Y +KXYKXY

KY XKY X +KY YKXX KY XKY Y +KY YKXY

 β

=
1

2M
βT

 KXX KXY

KY X KY Y


 KY X KY Y

KXX KXY

 β
=

1

2M
βTK

 0 I

I 0

Kβ
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Let R =

 0 I

I 0

, then the numerator becomes:

〈v|C(τ) |v〉 =
βTKRKβ

2M
(11)

Through very analogous steps, it is easy to show that the denominator becomes:

〈v|Σ |v〉 =
βTKKβ

2M
(12)

This means that the tICA method can be rewritten in terms of solely inner-products and we

can use the kernel trick.

Centering Data in the Feature Space

In the proof of the ktICA solution, we assumed that the vectors, |Φ(Xt)〉, were centered (i.e.

E
[
|Φ(Xt)〉

]
= 0). In order to solve the tICA problem, we need to calculate the gram matrix,

K, between the centered points in V . However, it is easy to show that the centered gram

matrix can be calculated from the uncentered one:

K = Ku −
1Ku

2M
− Ku1

2M
+

1Ku1

4M2
(13)

where 1 is a 2M × 2M matrix of all ones, and Ku is the gram matrix defined in the main

text for the uncentered data.
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