
Supplementary Information for “Modeling

Molecular Kinetics with tICA and the Kernel

Trick”

Christian R. Schwantes† and Vijay S. Pande∗,†,§

Department of Chemistry, Stanford University, Stanford, CA 94305

E-mail: pande@stanford.edu

∗To whom correspondence should be addressed
†Department of Chemistry, Stanford University, Stanford, CA 94305
‡Department of Computer Science, Stanford University, Stanford, CA 94305
¶Department of Structural Biology, Stanford University, Stanford, CA 94305

1



Braket Notation

In the main text, we used

x · y = xTy

to denote the inner product between two column vectors, and

x⊗ y = xyT

to denote the outer product. However, in what follows, it is very useful to use bra-ket

notation to follow the algebraic steps that arrive at the ktICA solution. Therefore, below:

〈x| y〉 = x · y = xTy

denotes the inner product, while the outer product is written as:

|x〉 〈y| = x⊗ y = xyT

Maximum Likelihood Estimator for tICA Matrices

If |xt〉 is a Markov chain in phase space, then the time-lag correlation, C(τ), and covariance,

Σ, matrices are defined as:

C(τ) = E
[
|δxt〉 〈δxt+τ |

]
(1)

Σ = E
[
|δxt〉 〈δxt|

]
(2)

where |δxt〉 = |xt〉 − |µ〉 and µ = E
[
|xt〉

]
.

To use the tICA method, we must construct estimators for µ, Σ, and C(τ) given finite

samples of the Markov chain. Importantly, the time-lag correlation matrix should be sym-

metric since the dynamics are reversible, but this may not be the case if only a sample mean

2



is used. The simplest approach we can take is to use a maximum likelihood estimator, where

we assume the data is distributed according to a multivariate normal distribution.

We assume that we are givenM pairs of transitions separated in time by τ ,
{

(|Xt〉 , |Yt〉)
}M
t=1

.

Define a new variable, |Zt〉, which is the concatenation of |Xt〉 and |Yt〉:

|Zt〉 =

 |Xt〉

|Yt〉


Then we will assume that these variables are distributed according to a multivariate normal

with covariance matrix, S equal to:

S =

 Σ C(τ)

C(τ) Σ


and mean given by:

|m〉 =

 |µ〉
|µ〉


Then the probability density at |z〉 can be written as:

p
(
|z〉
∣∣∣S, µ) = (2π)−

d
2 |S|−

1
2 exp

[
−1

2

(
〈z| − 〈m|

)
S−1

(
|z〉 − |m〉

)]

where d is twice the dimension of phase space.

Using this distribution, we can write the log-likelihood of the observed transitions, given

the model:

logL =
M∑
t=1

[
−d

2
log 2π − 1

2
log |S| − 1

2

(
〈Zt| − 〈m|

)
S−1

(
|Zt〉 − |m〉

)]
(3)

Using the properties of the matrix differential, it can be shown that the total differential of

the log-likelihood is:
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d logL =− M

2
tr(S−1dS)

− 1

2

M∑
t=1

tr
[
2S−1

(
|Zt〉 − |m〉

)
d 〈m|

]
− 1

2

M∑
t=1

tr
[
S−1

(
|Zt〉 − |m〉

)(
〈Zt| − 〈m|

)
S−1dS

] (4)

We could rewrite this total differential in terms of |µ〉, C(τ), and Σ, but it’s more convenient

to use the method of Lagrange multipliers to constrain the solutions, S and |m〉. Let R be

a block rotation matrix:

R =

 0 I

I 0


It’s easy to show that:

R

 A B

C D

R =

 D C

B A


and

R

 A

B

 =

 B

A

 ,
therefore the constraints we need to impose are:

RSR = S and R |m〉 = |m〉 .

We can then construct the Lagrange function:

Λ = logL+ 〈λ|
(
R |m〉 − |m〉

)
+
∑
i

∑
j

φij[RSR− S]ij

The total differential of Λ can then be written:
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dΛ = tr
[(
−

M∑
t=1

S−1
(
|Zt〉 − |m〉

)
+ (R− I) |λ〉

)
d 〈m|

]
+ tr

[(
−M

2
S−1 − 1

2

M∑
t=1

S−1
(
|Zt〉 − |m〉

)(
〈Zt| − 〈m|

)
S−1 + (RΦR− Φ)

)
dS

]

+ tr
[(
R |m〉 − |m〉

)
d 〈λ|

]
+ tr

[(
RSR− S

)
dΦ
]

(5)

The total differential is zero exactly when the terms multiplying dS and d |m〉 are zero. First,

we solve for |m〉:

−
M∑
t=1

S−1
(
|Zt〉 − |m〉

)
+ (R− I) |λ〉 = 0(

M∑
t=1

|Zt〉

)
−M |m〉 = S(R− I) |λ〉

Now, we add this equation to itself, but multiplied (from the left) by R:

[(
M∑
t=1

|Zt〉

)
−M |m〉

]
+R

[(
M∑
t=1

|Zt〉

)
−M |m〉

]
=
[
S(R− I) |λ〉

]
+R

[
S(R− I) |λ〉

]
(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 = (SR− S +RSR−RS) |λ〉(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 =

[
(SR−RS) + (RSR− S)

]
|λ〉(

M∑
t=1

|Zt〉+R |Zt〉

)
− 2M |m〉 = 0

|m〉 =
1

2M

M∑
t=1

|Zt〉+R |Zt〉
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We can then solve for S.

−M
2
S−1 − 1

2

M∑
t=1

S−1 |δZt〉 〈δZt|S−1 + (RΦR− Φ) = 0

M

2
S +

1

2

M∑
t=1

|δZt〉 〈δZt| = S(RΦR− Φ)S

Now, add this equation to itself, but multiplied by R from the left and the right.

M

2
S +

1

2

M∑
t=1

|δZt〉 〈δZt|+R

(
M

2
S +

M∑
t=1

|δZt〉 〈δZt|

)
R

= S(RΦR− Φ)S +R

(
S(RΦR− Φ)S

)
R

MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

= SRΦRS − SΦS +RSRΦRSR−RSΦSR

MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

=
(
SRΦRS −RSΦSR

)
+
(
RSRΦRSR− SΦS

)
MS +

(
1

2

M∑
t=1

|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

= 0

S =
1

2M

M∑
t=1

(
|δZt〉 〈δZt|+R |δZt〉 〈δZt|R

)

These solutions mean that the maximum likelihood estimators for |µ〉, Σ, and C(τ) are:

|µmle〉 =
1

2N

N∑
t=1

(
|δXt〉+ |δYt〉

)
(6)

Σmle =
1

2N

N∑
t=1

(
|δXt〉 〈δXt|+ |δYt〉 〈δYt|

)
(7)
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C
(τ)
mle =

1

2N

N∑
t=1

(
|δXt〉 〈δYt|+ |δYt〉 〈δXt|

)
(8)

Although, the MVN assumption is very crude, these estimators have two desirable properties:

1. C(τ) is always symmetric. Since the dynamics are reversible, the true time-lag correla-

tion matrix is symmetric.

2. The Rayleigh quotient:

〈v|C(τ)
mle |v〉

〈v|Σmle |v〉

is always in [−1, 1] (as long as Σmle is positive definite), which ensures that the eigen-

values from tICA are always real, and can be interpreted as timescales. This is because:

∣∣∣∣∣ 1

2M

M∑
t=1

〈v| δXt〉 〈δYt| v〉+ 〈v| δYt〉 〈δXt| v〉

∣∣∣∣∣ ≤∣∣∣∣∣ 1

2M

M∑
t=1

〈v| δXt〉 〈δXt| v〉+ 〈v| δYt〉 〈δYt| v〉

∣∣∣∣∣
which follows from the Cauchy-Schwarz inequality.

tICA Solutions are in the Span of the Input Data

The solutions to the tICA problem satisfy:

C(τ) |v〉 = λΣ |v〉
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Since Σ is positive definite, it is also nonsingular and so we can write:

|v〉 =
1

λ
Σ−1C(τ) |v〉

=
1

2Mλ
Σ−1

M∑
t=1

(
〈Φ(Xt)| v〉

)
|Φ(Yt)〉+

(
〈Φ(Yt)| v〉

)
|Φ(Xt)〉

:=
1

2Mλ
Σ−1 |x〉

where we’ve defined |x〉 to be the sum from the equation above. We know the covariance

matrix can also be diagonalized by a unitary matrix, P :

Σ = PΛP T =
[
|p1〉 |p2〉 . . . |pd〉

]


λ1 0 . . . 0

0 λ2 0 . . .

...

0 0 . . . λd





〈p1|

〈p2|
...

〈pd|


where |pi〉 is an eigenvector of Σ and λi is its eigenvalue. It’s easy to show that the eigen-

vectors of Σ are in the span of the |Xt〉’s and |Yt〉’s. Using the decomposition above, we can

rewrite the tICA solution in terms of a linear combination of the eigenvectors of Σ:

|v〉 =
1

2Mλ
PΛ−1P T |x〉

=
1

2Mλ

[
|p1〉 |p2〉 . . . |pd〉

]
Λ−1



〈p1| x〉

〈p2| x〉
...

〈pd| x〉


=

1

2Mλ

d∑
i=1

(
λ−1
i 〈pi| x〉

)
|pi〉
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which means that |v〉 is in the span of the eigenvectors of Σ. Since the eigenvectors of Σ are

all in the span of the data, |v〉 is also in the span of the |Xt〉’s and |Yt〉’s.

Derivation of the ktICA Solution

From the main text, recall that we are trying to rewrite the numerator and denominator of

the tICA objective function in Eq. (9).

f
(
|v〉
)

=
〈v|C(τ) |v〉
〈v|Σ |v〉

(9)

As shown above, the solution |v〉 is in the span of the input data, so let β be the length 2M

vector of coefficients such that:

|v〉 =
M∑
t=1

βi |Φ(Xt)〉+ βi+M |Φ(Yt)〉 (10)
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Now, we need to simply expand the numerate and denominator of Eq. (9) in terms of the

elements of β.

〈v|C(τ) |v〉 =
1

2M

M∑
t=1

〈v| Φ(Xt)〉 〈Φ(Yt)| v〉

+ 〈v| Φ(Yt)〉 〈Φ(Xt)| v〉

=
1

2M

M∑
t=1

(
M∑
i=1

[
βiK

XX
it + βi+MK

Y X
it

]
M∑
j=1

[
βjK

Y X
tj + βj+MK

Y Y
tj

]

+
M∑
i=1

[
βiK

XY
it + βi+MK

Y Y
it

]
M∑
j=1

[
βjK

XX
tj + βj+MK

XY
tj

])

=
1

2M

M∑
t=1

βT
 KXX

KY X



t

[(
KY X KY Y

)
β

]
t

+

βT
 KXY

KY Y



t

[(
KXX KXY

)
β

]
t

=
1

2M
βT


 KXX

KY X

( KY X KY Y

)
+

 KXY

KY Y

( KXX KXY

) β

=
1

2M
βT


KXXKY X +KXYKXX KXXKY Y +KXYKXY

KY XKY X +KY YKXX KY XKY Y +KY YKXY

 β

=
1

2M
βT

 KXX KXY

KY X KY Y


 KY X KY Y

KXX KXY

 β
=

1

2M
βTK

 0 I

I 0

Kβ
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Let R =

 0 I

I 0

, then the numerator becomes:

〈v|C(τ) |v〉 =
βTKRKβ

2M
(11)

Through very analogous steps, it is easy to show that the denominator becomes:

〈v|Σ |v〉 =
βTKKβ

2M
(12)

This means that the tICA method can be rewritten in terms of solely inner-products and we

can use the kernel trick.

Centering Data in the Feature Space

In the proof of the ktICA solution, we assumed that the vectors, |Φ(Xt)〉, were centered (i.e.

E
[
|Φ(Xt)〉

]
= 0). In order to solve the tICA problem, we need to calculate the gram matrix,

K, between the centered points in V . However, it is easy to show that the centered gram

matrix can be calculated from the uncentered one:

K = Ku −
1Ku

2M
− Ku1

2M
+

1Ku1

4M2
(13)

where 1 is a 2M × 2M matrix of all ones, and Ku is the gram matrix defined in the main

text for the uncentered data.
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