
The study of complex systems, including social systems, is of growing importance. Our paper

demonstrates the power of a model-based analysis in such contexts. Power is gained because be-

havior is modeled in detail, at the individual level. However, where individual level modeling is not

accompanied by individual level data, an explicit solution is generally impossible. Simulation, and

Bayesian methods have proven their worth in the field of behavior, particularly where there is com-

plete information (cf Perez-Escudero and de Polavieja, 2011; Arganda et al., 2012; Mann et al., 2014;

Aplin et al., 2014; Mann, 2011). However the form of our data—multiple sampled states describ-

ing spatial distributions across time—is common in animal behavior research. For instance, field

observations may be restricted to spot-sampling distributions of individuals, or patterns of group

membership (e.g. Oh and Badyaev, 2010; Jovani et al., 2008; Wittemyer et al., 2005), and tools to

analyze this kind of data will be valuable. Here, we invoked ABC methodology, an approach that

has gained traction in recent years in a variety of fields. The ABC method may be complementary

to other emerging methods of model building and fitting (Franz and Nunn, 2009; Pratt et al., 2005).

For example, we used simple dynamic models from the animal behavior to characterize variation

resulting from genotype, density and a candidate behavior (aggression) in many replicate data sets.

Once the basic dynamics of a system has been described, one could use ABC with these models to es-

timate the underlying parameter values which lead to patterns of group behavior such as schooling

or hierarchy development (Hemelrijk, 1999); or in human social sciences (Smith and Conrey, 2007);

or in complex social groups such as flies.
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1 Online Appendix A

1.1 Description of Simulation and ABC

At the start of each simulation, flies were distributed across all patches at random, and allowed to

assort themselves for 100 fly moves (patch joining-or-leaving events). We then allowed the simula-

tion to run for 200×(n-samples) fly moves and recorded the state at each event. The time-points at
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which we sampled within each simulation were chosen to match the empirical data collection (from

10-20 samples). Samples were collected at equally spaced intervals relative to the internal simulation

clock against which movement rates were calculated. For each sample set, we calculated summary

statistics S′ exactly as we did the empirical summary statistics S in S&F. At each step of the ABC

process X(·), we propose new parameter values Θ′ and then measure similarity between D′, data

simulated with the current set of parameter values, and the observed data, D. We do this via the

summary statistics S′ (S), given earlier. This forms part of a determination of whether to accept the

new Θ′ or revert to the last accepted Θ. Once the algorithm has reached stationarity (i.e., the sequence

of Θ-values is no longer influenced by the point from which it started), the samples are from the

posterior distribution f (Θ | S), an approximation to the distribution of interest f (Θ | D) (Marjoram

et al., 2003). All S′ were normalised by subtracting the mean, and dividing by the standard deviation,

of their respective empirical S to place all statistics on the same scale.

1.2 Summary statistics and model fit

Summary statistics for each genotype×density treatment were calculated across a series of time

points within each simulation. All summary statistics were standardized by subtracting the empirical

mean value for that statistic, and dividing by the empirical standard deviation. This was done to

help ensure that no single statistic dominated the calculation of the distance metric. The distance

measure, d, between observed and simulated data was calculated as the sum of squared deviations

of each summary statistic S′i from the empirical statistic Si (Euclidean distance), where 0 indicates a

perfect fit. We derived 11 empirical fit statistics Sj from the data of S&F. We used the five descriptive

statistics reported in S&F, plus an additional 4 individual-group size descriptors. To account for

variation between samples, we fit the the standard deviation among samples for 2 of our metrics,

mAv and fAv.

The following j group metrics Mj were calculated for each time point:

mAv, fAv— Male and female average group size was calculated as the average number of individuals

of sex s on each p of P patches .
1
P

P

∑
p=1

nsp (2)

mVar, fVar— Male and female variance was calculated as the variance between patches p of flies of
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sex s.

1
P

P

∑
p=1

(nsp − n̄s)
2 (3)

mfCov— The covariance between males m and females f , was calculated as the covariance between

males and females across patches p.

1
P

P

∑
p=1

(nmp − n̄m)(n f p − n̄ f ) (4)

mPerM, fPerM, mPerF, fPerF— The so-called individual-group size metrics (Jovani and Mavor, 2011)

are the mean number of (other) individuals of sex q on a patch with each individual of sex s. Let Qp

be the number of non-self individuals of sex q on patch p. That is, if q=s, Qp = nsp − 1; while if q 6= s,

Qp = nqp. We then define these parameters as:

(
P

∑
p=1

nsp)
−1

P

∑
p=1

nspQp (5)

The average of the Mj group level metrics was calculated across each timepoint t, for the N samples

of treatment k, as:

1
Nk

Nk

∑
t=1

Mtjk (6)

The standard deviation of the Mj group level metrics was calculated across each timepoint t, for the

N samples of treatment k

1
Nk − 1

Nk

∑
t=1

(Mtjk − M̄jk)
2 (7)

The set of summary statistics Sik comprised the mean values of Mjk, as well as the standard devia-

tions of mAv and fAv,

The statistics mVar, fVar, mPerM, fPerM, mPerF, and fPerF were log transformed. For each of these

statistics, a nominal amount of 0.1 was added to the untransformed statistic to avoid taking the log
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of 0. The statistic mfCovar was log transformed as well, after adding a nominal value of 2.2. For

values of mfCovar lower than -2.2, representing a floor value which was only surpassed a single

time in our empirical data, a transformed value of -8.8 was assigned. In regression analyses of the

empirical data, using a floor value of -8.8 resulted in the most normally distributed residuals. No

transformation was necessary for mAv or fAv, or for the standard deviations of these two statistics.

1.3 Acceptance threshold

It is important in ABC to have a low tolerance, ε. As ε goes up, the rejection rate decreases, and

estimates of Θ will increasingly resemble the prior. We employed a two-part ABC process to balance

the need to efficiently explore a large state space (7 dimensional) with the need to rigorously charac-

terize the posterior. The first step in the process was a preliminary threshold estimation to establish

an appropriate ε. Then we estimated Θ using the ε determined in the previous step.

In the first step we conducted ABC with a fluctuating ε which tended towards lower values as the

MCMC explored regions of better model fit. This process was analogous to simulated annealing,

or the ABC scheme of (Bortot et al., 2007), and allowed the algorithm to “cool” to efficient levels of

model fit without becoming stuck in local minima. We ran 100 chains of the annealing process in

parallel for each treatment for an arbitrary time period (1 hour). From these chains, we chose a target

value of ε equal to the lowest 5th percentile for each treatment independently. Next we ran our final

ABC analysis, in which, after a burn-in period, ε was fixed at the value determined in the previous

step. Only after fixing the threshold did we begin to record Θ. The fixed threshold values varied

from 0.39 to 1.15 among treatments. The acceptance rates varied from 0.06 to 0.15 across treatments

in this fixed ε, posterior estimation phase of the ABC analysis.

1.4 Stationarity diagnostics and autocorrelation

We used the autocorrelation diagnostic acf{stats} in R to establish a subsample rate for each Markov

Chain. We ran 30 parallel MCMC chains, with separate random number seeds for each treatment, in

order to maximize computational speed on the University of Southern California high performance

computer cluster. Each chain was run on average for 7.8 million iterations. MCMC convergence
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among chains was assessed using the Gelman-Rubin test via the gelman.diag{coda} function in R.

Briefly, this test calculates the ratio of between-run variation to within-run variation—a Potential

Scale Reduction Factor (PSRF). A value close to 1 means that all the variation is due to within-run

variation. We tested all replicates in the full dataset, and the two models mfHigh and mfLow. For

the full dataset, values of the Multivariate PSRF (MPSRF), which considers each of the 7 parameters

simultaneously, ranged from 1.02 to 1.81, with an average value of 1.15 (sd=0.16). This reflects the

difficulty of mixing effectively between the mfHigh and mfLow models. When calculated separately

for the two models, the MPSRF was much lower. For mfHigh the values of MPSRF varied between

1.02 and 1.18, with a mean of 1.08 (sd=0.04). For mfLow, MPSRF varied between 1.02, and 1.28 with

a mean of 1.07 (sd=0.06). We did not calculate one MPSRF score in mfLow because the sample size

was too small (all chains had fewer than 500 samples). An additional 2 of the mfLow MPSRF scores

were above 1.2, also a result of very small sample size.

1.5 Multimodality tests

We tested for multiple peaks (peaksIDPmisc in R), with PHmin set at 1/10 the maximum peak

height (qualitatively similar results were found for all values of PHmin tested). We found significant

multimodality, in particular for parameters a f m, am f and l f (Fig. S2). Across all treatments, the

number of times a parameter was bimodal (there were no trimodal peaks) was 0 for jm, 15 for l f , 1

for j f , 0 for amm, 18 for am f , 23 for a f m, and 0 for a f f , for a total of 57 bimodal marginal posteriors.

Because the bimodality in am f and a f m was reflected around the 1:1 axis (Figure S1), we split the

posterior of each treatment into an mfHigh and mfLow posterior, as described in the main text.

In effect, we are evaluating our data under 2 different priors, where the joint prior of am f /a f m is

constrained to be above or below 1 for mfHigh and mfLow respectively. All other priors remain flat

and uniform within their ranges. Upon testing the resulting posteriors of mfHigh and mfLow, there

is no further evidence of bi-modality in any parameter in any treatment (assessed using peaksIDPisc

in R). This is evidence that we have successfully resolved the identifiability issue.
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1.6 Variation among posteriors across treatments

To evaluate differences between posteriors, we used the Wilcoxon Signed Rank test of R (wilcox.test{stats}).

We did not test all pairs of Θ, but tested for differences in posteriors for pairs of treatments that either:

were between genotypes that differed by one rank of aggression and were within the same density;

or were within the same genotype but which differed by one unit of density. In a subsequent step,

we used the marginal mean of each parameter as a point estimate of the location of the full posterior,

allowing us to examine effects of genotype, aggression and density. Because information might be

lost in summarizing a full posterior this way, we also performed the same tests using nonparametric

(permutation) methods on the full posterior. We found the same relationships, with similar signif-

icance levels, when we used the full posterior for Θ and when we used the point estimate Θ̂. We

therefore opted to present the simpler analysis in the main text.

1.7 Model validation

Any Bayesian model-based analysis paradigm will return a posterior distribution for its parameters,

even if the chosen model is a poor fit. Therefore, subsequent to the analysis, it is important to test

whether the model is capable of generating observed data values with reasonable probability when

using parameters sampled from their estimated posterior distributions. We assess this in two ways.

First, we take a number of parameter combinations, generate summary statistics from them, and run

the full ABC analysis to test whether we can reliably recover the original parameters. Second, by

using the posterior predictive distribution (cf Beaumont, 2010).

Full cycle ABC: In order to determine whether our analysis can recover known parameter estimates

with any fidelity, we ran a full ABC cycle, starting by generating our summary statistics via simula-

tion from 10 combinations of parameters. These 10 initial sets of Θ were drawn from the posterior

of one of our replicates (Ag×d10). We sampled from this region of parameter space, rather than ran-

domly drawn values of Θ, because we are not interested in characterising the behavior and reliability

of the entire parameter space. Much of this parameter space will correspond to uninformative be-

havior, where (for instance) only one sex moves, no flies spend time on patches, or all flies congregate

on a single patch. In many of these regions, we may have effectively no power to recover reliable

information about most of the initial parameters, or be subject to biases that have no relevance to the
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problem we are considering.

We simulated data one time for each of these sets of Θ, sampled them 18 times each, and calculated S.

We then used each replicate value of S in a full ABC analysis to recover Θ′. The original values of Θ

were appropriately distributed within the range of their posterior estimates. Out of the 70 parameter

estimates (for the 10 replicates of the 7 non-zero parameters in Θ), only one fell outside the 95%

confidence interval. The lowest quartile of Θ′ contained the true Θ 21% of the time; the next quartile

contained the true Θ 36% of the time; the next quartile 23% of the time, and the highest quartile 20%

of the time.

Posterior predictive distribution: Having established that our simulation robustly returns reasonable

estimates of a given Θ, we then use the posterior predictive distribution to establish whether we have

the resolution to measure differences in S between replicates. For a given treatment, we repeatedly

sample parameter values from their (joint) posterior distribution, given the observed data. For each

set of sampled parameter values we then simulate an observed dataset and calculate the values of

the summary statistics. The collection of statistic values we observe using this procedure forms the

posterior predictive distribution. Poor model fit is indicated if the statistic values observed in the

original dataset consistently fall in the tails of the posterior predictive distribution. We performed

this validation on the mfHigh and mfLow models separately, and on the combined model.

The empirical values of S for most treatments lie comfortably within the interquartile range of S′

(Table S1). For example, in the dataset derived from the full posterior, mAve, fAve, mfCOv, fPermM

and mPerF, 100% of S for all treatments lie within the interquartile range. This indicates good model

fit. However, we do see some evidence of a tendency to generate values of mAveSD and fAveSD that

tend to the high side. This indicates that, despite the good overall fit, our models appears to favor

less-dynamic fly movement rates. This suggests possible future refinements to our model, that better

capture this feature.

1.8 Test of difference between male and female social preferences

It is a known drawback of ABC that typical model selection approaches may fail, because the (in-

tractable) term P(D|Θ) will vary between models with different parameters (Robert et al., 2011). A

typical hierarchical model building approach might start by modeling male and female social pref-
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Table S1: Summary of model validation results for the full prior, and the two restricted models
mfHigh and mfLow. For each of the 11 summary statistics, the proportion of treatments for which
the empirical statistics lie within the interquartile range of their posterior predictive distribution is

shown
Stat Full Prior mfHigh mfLow
mAve 1.00 1.00 1.00
fAve 1.00 1.00 0.97
mAveSD 0.37 0.33 0.33
fAveSD 0.50 0.57 0.23
mVar 0.90 0.93 0.73
fVar 0.87 0.87 0.93
mfCov 1.00 0.93 0.97
mPerM 0.97 0.93 0.83
fPerM 1.00 1.00 0.77
mPerF 1.00 1.00 0.87
fPerF 0.97 0.90 1.00

erences as identical, and then test for the significance of subsequent sex-specific terms. Because we

were interested in measuring the differences in male and female social behavior from the outset, and

given that we could not perform model selection, we constructed our minimal model including the

sex×sex interaction terms.

If these terms were, in fact, not sex specific, we would not expect to see consistent differences between

our estimated social preference terms am f and a f f ; or amm and a f m. We performed model selection,

testing for differences in these terms among replicates, using the mean values of the social preference

parameters in linear models, with sex (1 or 0), density, and the interaction between them as possible

predictors; ranking models by BIC.

Model selection suggested that males and females differed in both their preferences for males and

females, and that there was an interaction with density on these preferences. In the contrast between

male and female social preferences for females, the full model was preferred, with sex (est=7.76,

t=5.62, P<0.001), density (est=0.59, t=4.91, P<0.001) and the interaction (est=-0.50, t=-2.96, P=0.005)

all significant. Similarly, for the social preference for males the full model was preferred. Sex (est=-

6.12, t=-2.98, P=0.004), density (est=-0.60, t=-3.33, P=0.002) and the interaction (est=0.59, t=2.33,

P=0.023) were all significant.

Given the degree of significance on the consistency of the social preference terms, and the complexity

of the interactions, we are comfortable that there is support for our choice to model social preferences

separately for the sexes.
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1.9 Hypothesis testing in an ABS framework

As described in the main text, we tested hypotheses for mechanisms of group structure regulation

in our ABS framework. To test for effects of aggression and density, we first created a “baseline”

model, where all parameters were set to their overall means across genotype and density treatment.

To model the effects of density or aggression on parameters of interest, we took the linear expectation

of these parameters at the extremes of density or aggression. In all simulations we used 20 flies: 10

males and 10 females (equivalent to our highest density treatment). We sampled from the simula-

tion in the same way as during the ABC process: from each simulation 20 times, at even intervals

relative to “fly time”. We calculated our summary statistics from these samples for each replicate in-

dependently, again as during the ABC process. We ran 30 replicates for each simulated “treatment”,

varying the random seed for each replicate. Thus, the sample size for estimating effects was identical

to that of our empirical data, and our ABC estimates. When we wanted to minimize the effect of am f

on female behavior, we set am f to 1, rather than 0. Setting am f to 0 invariably resulted in nearly all

females joining a single patch and not moving at all, such that it was difficult to detect the effects of

variation in other parameters.

1.10 Aggression effects, and the role of am f on changes in female behavior

We hypothesized that several of the changes in parameter estimates with aggression were related to

disruption of group structure by mobile, displaced males. In particular, higher male-male aggression

was correlated with higher female group joining rates (j f ) but with no effect on fAv (the average

number of females on patches). We inferred that these changes might be reflected in higher male and

female movement rates, but that the effect of aggression on females would be minimized if am f was

negligible.

We created two combinations of parameters that differed in only the 3 parameters directly correlated

with aggression: j f , jm, and amm. In both cases, lm=0, l f =-2.96, am f =6.4, a f m=-2.5, and a f f =2.6. These

are the mean values for these parameters across all trials. In the low aggression mimic, jm=-0.5, j f =-

0.5, and amm=-3. In the high aggression case, jm=0.4, j f =0.1, and amm=-5, which are approximately

the linear expectations in high and low aggression. To explore the effect of am f on overall movement

rate, and particularly female movement rate, we set am f to 1 (nearly neutral) in the high-aggression
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combination of parameters.

All treatments were highly significantly different from each other (P<0.001) in both time and the

proportion of male moves (arcsin transformed) under standard linear regression. At high simulated

aggression, flies moved more often overall, and males increased their movement rate more than fe-

males. When the effect of male preference for females was removed, flies moved less often, and

males accounted for almost all the movement (Figure S2). This suggests that the greatest contrib-

utor to female movement among patches could be male presence on those patches. However, it is

important to note that what we are testing here is whether it is possible that changes in male-male

interactions can lead to the apparent effects we detect in other male-and-female parameters, and in

overall group dynamics. Our proposed mechanism—that aggression changes increases overall male

movement rates, and thus indirectly drives an increase in female overall movement rates—is only

one possible interpretation of our results. It is possible that there are other, more subtle effects that

our minimal simulation and univariate regression analysis is not detecting. Full testing of our hy-

pothesis will require further experimentation and analysis. The same qualified interpretation should

be applied to our analysis in the next section.

1.11 Density Effects, and the interaction between am f and changes in female

preferences

We found that, at higher densities, female social parameter estimates were more extreme. We did not

find changes in the summary statistics that reflected these changes. We hypothesized, first, that the

changes in a f m and a f f canceled each other out (that if we changed one or the other, group outcomes

would change dramatically). We hypothesized further, that they canceled-out via the effects of male

behavior. We test this as follows.

Under high density, female attraction to females a f f increases, and female attraction to males a f m

decreases. We set the parameters in our baseline model: lm=0, l f =-2.96, j f =-0.5, amm=-3.95, am f =6.1,

a f m=-1.2, a f f =1.2. We varied two parameters to their high density values—a f m=-3.9 and a f f =3.9—

separately and together. Then, to examine whether the observed buffering of female group statistics

was due to the effect of males, we tested the high versus low density values of a f f and a f m with am f

set to 1 (nearly neutral). Note that we do not change the number of flies in these models.
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We tested the 3 female-specific group statistics: fAve, fVar, and fPerF for the effects of these manip-

ulations. We compared the “low density” statistics to the three cases where we varied a f m, to its

low “high density” value, a f f to its high “high density” value, and both parameters together. For

one statistic, fAve, the “low density” values and the “high density” values were significantly differ-

ent (est=-0.13, t=-5.96, P¡0.001). For the other two statistics, the difference was not significant. The

statistics were all highly significantly different from the “low density” baseline when we varied a f m

and a f f independently (Figure S3). When we removed the effect of am f , the two low am f treatments

were significantly different in all statistics. This suggests that male attraction to females is a neces-

sary condition for the buffering effect on female group structure with changes in preferences due to

density.

We only report the female-specific parameters, because the effects of changing female preferences

and am f on male-female covariance statistics were difficult to interpret, and will need to be explored

further in conjunction with additional experimental manipulations in future.
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level outcomes from variation in individual-level parameters. Females are denoted as light, and

males as dark. A) Our proposed mechanism for how variation in aggression indirectly affects female

group joining parameters. When aggression is high (male-to-male affinity, amm is low), males move

between groups more often. They are thus more likely to encounter groups of females. Because

female-to-male affinity, a f m, is consistently negative, when males join these groups are destabilized

and females leave and must find a new patch. B) We found that density affects both female-to-male

and female-to-female affinity, a f m and a f f , in opposing ways. We propose that the effects of this

change cancel out at the group-level via a negative feedback loop involving male preferences for

females. An arrow indicates a positive effect, a bar headed line an inhibitory effect.

Online Figure S1: Bivariate density plots of the joint density estimates of y=am f and x=a f m for each

treatment. Low posterior densities are indicated with blue, and high with yellow. All axese are scaled

-10:10, and the identity line is indicated in black.

Online Figure S2: The effect of simulated aggression, and removing the effects of am f , on rates of

overall movement, and relative male movement rate. Time is expressed in relative fly ‘seconds’,

moves are the proportion of total moves made by males.

Online Figure S3: The effect of simulated density changes in female group preferences from “low

density” (Low Dens), when parameters vary separately (Low fm and High ff) and together (High

Dens). We also tested whether male preferences for females was a possible mechanism for the lack

of change in statistics between the Low Dens and High Dens treatments. We tested the effects on 3

female specific statistics, the average number of females among patches (Female Ave), the variance

in number of females among patches (Female Var) and the number of females per female in a group

(F per F). Of all comparisons made, only the Low Dens - High Dens comparisons for Female Var and

F per F were non-significant.

Statistic Description
mAv/fAv Average number of males, or females, in groups
mAvSD/fAvSD Sampling variance in mAv, or fAv
mVar/fVar Variance in the number of males, or females,

among groups
mfCor Correlation in the number of males and females

among groups
mPerM/fPerM
/mPerF/fPerF

The average number of (other) males or females
each male, or female, experiences in their group.
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Θ Parameter Description
lm Group leaving rate for males (=0)
jm Group joining rate for males
l f Group leaving rate for females
j f Group joining rate for females
amm Effect of other males on male-group leaving rate
am f Effect of females on male-group leaving rate
a f m Effect of males on female-group leaving rate
a f f Effect of other females on female-group leaving rate
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