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Supplementary Methods and Results 
 
Experimental Procedures 
 
Participants   

 
This study was approved by the University of California, San Diego 

Institutional Review Board. Parents provided written informed consent according to 
the Declaration of Helsinki and were paid for their participation. A total of 103 
toddlers participated in this study. These toddlers were part of a larger longitudinal 
study of toddlers at-risk for autism (age range 12-48 months) who were enrolled in 
neuroimaging studies at our center (www.autism-center.ucsd.edu). All toddlers were 
recruited in the same way via general community referral (e.g. website or outside 
agency) and a population-based screening method called the 1-Year Well-Baby 
Check-Up Approach (Pierce et al., 2011). Using this method, infants and toddlers at-
risk for ASD, at-risk for a language (LD) or other developmental delay (DD), or not at 
risk for a developmental disorder were identified in pediatric offices with a broadband 
screening instrument, the Communication and Symbolic Behavior Scales-
Developmental Profile Infant Toddler Checklist (Wetherby et al., 2002), and were 
recruited and tracked until 3 to 4 years of age. This method thus allowed for the 
prospective study of autism and LD/DD as compared with typical toddlers from ages 
as young as 1 and 2 years. 

 
ASD diagnoses were made by multiple PhD-level licensed clinical 

psychologists with extensive experience in autism using the three initial modules of 
the Autism Diagnostic Observation Schedule (toddler, 1, or 2) (Lord et al., 2000; 
Luyster et al., 2009), the Mullen Scales for Early Learning (Mullen, 1995), and the 
Vineland Scales of Adaptive Behavior (Sparrow et al., 1984). Diagnoses were based 
on based on clinical judgment (i.e., a DSM-IV checklist as well as the clinician’s 
overall diagnostic impression formed after observing the child during the 3-4 hour test 
visit) and ADOS scores. In all toddlers, behavioral exams were performed within 3 
months of the fMRI scan (typically they were performed within the same week). The 
diagnosis of toddlers with ASD who were younger than 24 months at the time of the 
scan was also confirmed at later ages. For the purposes of this study, language ability 
and outcome was operationalized based on receptive and expressive language (EL or 
RL) T-scores from the Mullen Scales of Early Learning.  Because the norm for each 
Mullen subtest is set to a T-score of 50, ±10 as 1 standard deviation, we used this as a 
criteria for classifying individuals into language outcome groups based on their EL 
and RL T-scores from the outcome testing time-point (generally about a year after 
assessment of brain function). Furthermore, in this study we assessed all individuals 
irrespective of diagnosis longitudinally with the Mullen, Vineland, and ADOS and 
attempted measurements approximately every 6 months since the intake assessment, 
although this was not always possible.  

 
Of those 103 infants and toddlers in this study, 60 retained a diagnosis of ASD 

across longitudinal evaluations towards their outcome testing time-point.  Further 
stratification of the ASD group was achieved by dividing individuals into 2 language 
outcome groups. Twenty-four individuals with ASD were classified as ‘poor’ 
language outcome (ASD Poor), based on the criteria of having both Mullen EL and 



RL T-scores more than 1 standard deviation below the norm of 50 (i.e. T<40) at the 
outcome testing time-point (n = 24, 19 male, 5 female; mean age at fMRI scan = 
27.13 months, SD at fMRI scan = 7.92, range = 12-47 months).  Another 36 
individuals with ASD were classified as ‘good’ language outcome (ASD Good), 
based on having either Mullen EL or RL T-scores greater than or equal to 40 (i.e. T ≥ 
40) at outcome (n = 36, 28 male, 8 female; mean age at fMRI scan = 25.38 months, 
SD at fMRI scan = 8.69, range = 11-39 months).  The usage of the term ‘Good’ here 
is not used to refer to ability level in absolute terms, but more reflects ability relative 
to the ASD Poor subgroup.   

 
Two comparison groups were included in addition to the ASD subgroups. The 

first consisted of 24 typically-developing toddlers (TD) with no neurodevelopmental 
diagnosis and no family history of ASD or any other neurodevelopmental disorders.  
Typically-developing comparison participants were obtained from community and 
pediatrician referrals and were matched to the poor and good ASD language outcome 
groups on sex (19 male, 5 female) and age at fMRI scan (mean age at fMRI scan = 
27.02  months, SD at fMRI scan = 9.69, range = 13-44 months).  The second 
comparison group consisted of 19 toddlers with language and/or developmental 
delays (LD/DD; 17 male, 2 female) but did not meet criteria for diagnosis of an 
autism spectrum disorder (mean age at fMRI scan = 21.40 months, SD = 8.46, range = 
12-39 months).  Of the 19 LD/DD individuals, 13 were classified as ‘language delay’ 
(LD) and 6 were classified as ‘developmental delay’ (DD). At intake, within the 
domain of language measures (i.e. Mullen EL and RL T-scores), DD was similar to 
the LD on EL (DD mean = 32.5, SD = 15.06; LD mean = 37.15, SD = 9.69; t(17) = 
0.81, p = 0.42) and was substantially lower on RL (DD mean = 30.66, SD = 7.89; LD 
mean = 42.07, SD = 8.22; t(17) = 2.84, p = 0.011).  In addition to the fact that these 
scores are all well below T = 50 on the Mullen, which reflects norms of age-
appropriate ability in typical development, the fact that the DD group also shows 
substantial delays within the domain of language demonstrates that all individuals 
within this combined LD/DD group are delayed in language development. Thus as a 
comparison group to ASD, this group offers another non-ASD comparison group, but 
where developmental delays particularly in the domain of language development are 
present.  
 

Demographic and descriptive statistics for clinical measures for all groups at 
intake and outcome time-points are presented in Table S1. In depth analysis of group-
differences in developmental trajectories and main effects of group are presented 
within the main text of the manuscript.  However, here we present some initial 
analyses to assess similarities or differences between groups on main demographic 
characteristics such as age at fMRI.  An ANOVA showed no significant effect of 
group on age at fMRI scan (F(3,99) = 1.92, p = 0.13, partial η2 = 0.055), although the 
p-value and effect size suggests a trend for a difference that may be driven by the 
LD/DD being slightly younger than the other groups.  Therefore, in all fMRI analyses, 
we included age at fMRI scan as a covariate. 

 
  
Behavioral Data Analysis 

 
All behavioral analyses reported in the main text of the manuscript employ 

mixed-effect analyses in order to model within-individual trajectories and group-level 



trajectories.  These analyses were implemented within R and used the lme function 
from the nlme package (http://cran.r-project.org/web/packages/nlme/index.html) for 
mixed-effect modeling.  Main analyses consisted of mixed-effect ANOVAs 
(modeling random slopes and intercepts) and were followed up by post-hoc pairwise 
group comparisons.  Given the 6 pairwise post-hoc comparisons, results were only 
deemed significant if they passed a Bonferroni-corrected alpha threshold of 0.0083. 

 
 

fMRI Task Design and Behavioral Measures 
 
The fMRI task was identical to that used in our previously published studies 

(Eyler et al., 2012; Redcay and Courchesne, 2008; Redcay et al., 2008) and consisted 
of three types of stimuli, presented in 20 second blocks: complex forward speech, 
simple forward speech and backward speech. All speech conditions were created 
using the same female speaker. During the complex forward speech condition, 
toddlers were exposed to segments of a children’s story that was written at a 
comprehension level of over 48 months. During the simple forward speech condition, 
toddlers were exposed to excerpts from a children’s story written at a comprehension 
level between 12 and 36 months. Finally, during the backward speech condition, 
toddlers were exposed to the simple story segments played backwards. There were 
also 20 second rest blocks (no presented stimuli) between each stimulus type. Each 
stimulus type was repeated three times in a pseudorandom order. The total task length 
was 6 min 25 seconds. The stimuli were presented using commercially available 
music presentation software with maximum volume set both for the software and the 
computer’s speakers. Stimulus presentation was through pneumatic headphones 
(Confon, Inc.) set to a volume attenuation of -40 dB for all participants. 

 
 

Stimuli 
 

The comprehension levels for the simple and complex speech conditions were 
defined informally with the simple speech excerpts taken from a toddler’s board book, 
“Its Time for Sleep” written by Mem Fox. Words in this book were simple, common 
words well known by toddlers (most listed in the McArthur Bates CDI) and were 
almost exclusively 1 and 2 word syllable words.  For example, one line reads: “Its 
time for bed, little sheep, little sheep.  The cows are out and fast asleep.”   The 
“complex” speech excerpts were taken from a book of poetic verses for older children 
called “A Child's Garden of Verses” written by Robert Luis Stevenson.  The words 
were more complex and some of the words contained 3 or more syllables. For 
example, one line reads “I rose and found the dew on every buttercup.” 

 
 
fMRI Data Acquisition 

 
Infants and toddlers were imaged in a 1.5 Tesla General Electric MRI scanner 

during natural sleep at night; no sedation was used. Parents were encouraged to forgo 
any usual naps by the child and engage the child in rigorous physical activity during 
the day. Families arrived at the scanning facility 1 h after the child’s typical bedtime 
and most children had been asleep in the car for ~15 min prior to arrival. If not 
already asleep or if awakened by placement on the scanner bed, the child was allowed 



to fall asleep in the waiting or scanning room and was placed on the scanner bed after 
~15 min of sleep. The time that the child fell asleep was recorded for every 
participant. After placement of the headphones, padding of the head for comfort and 
motion reduction and covering the child with a weighted blanket for warmth and 
motion reduction, the scan was started. A research assistant was present in the room 
next to the child during the entire scan and stopped the scan if the child woke up or 
made a large movement. 

 
The order of scans varied somewhat between individuals, but all participants 

first received a high-resolution, T1-weighted anatomical scan (repetition time=6.5, 
flip angle=12°, bandwidth=31.25, field of view = 24 cm, in-plane resolution = 1 x 1 
mm, slice thickness = 1.2 mm, 170 slices, scan length = 7 min 24 s) for localization of 
functional signals and warping into standard atlas space. On average, the speech task 
was presented 18.3 ± 13.3 min after the onset of scanning. Other functional and 
anatomical scans were acquired before and after the speech task; data from these will 
not be presented in this article. If the child remained asleep for the entire procedure 
including these other scans, the total scan time was 1 h 15 min. 

 
Blood oxygenation level-dependent signal was measured across the whole 

brain with echoplanar imaging during the language paradigm. Scan parameters were: 
echo time = 30 ms, repetition time = 2500 ms, flip angle = 90°, bandwidth = 70 kHz, 
field of view = 25.6 cm, in-plane resolution = 4 x 4 mm, slice thickness = 4 mm, 31 
slices. 
 
 
fMRI Data Analysis 

 
Preprocessing of functional imaging data was implemented within the 

Analysis of Functional NeuroImages (AFNI) software package. The preprocessing 
pipeline was comprised of motion correction, normalization to Talairach space, and 
smoothing (8mm full-width at half-maximum (FWHM) Gaussian kernel). To examine 
head motion across the groups in more detail, we used the metric of framewise 
displacement (FD) quantified in millimeters (Power et al., 2012). Because of 
positively skewed distributions in mean FD, a Kruskal-Wallis one-way non-
parametric ANOVA was used. We found significant between-group differences in 
mean FD (χ2(3,99) = 11.65, p = 0.0087), with this difference being driven primarily 
by outliers in LD/DD compared to ASD Poor (Fig S5A).  Given this difference and 
the additional known issues with the influence of head motion on BOLD signal 
variation, we made attempts in the analysis to regress out motion parameters in 1st 
level analyses and regress out mean FD in 2nd level analyses (similar to the 
recommendations made by Yan and colleagues) (Yan et al., 2013).  

 
In addition to covarying out mean FD, we also ran a further analysis on all 

individuals whom had mean FD less than or equal to 0.1mm (number excluded:  n=5 
TD; n=7 LD/DD, n=7 ASD Good; n=0 ASD Poor).  This range restriction on head 
movement was sufficient for removing the group-difference in mean FD (χ2(3,80) = 
5.07, p = 0.16) (Fig S5B).  We then re-ran the primary ANCOVA on the NeuroSynth 
left-hemisphere temporal ROI and found that in this motion control analysis, that the 
group difference remained and that the effect size was larger than in the analysis on 
all individuals (F(3,78) = 5.36, p = 0.002, partial η2 = 0.171).  Thus, this additional 



motion control analysis further demonstrates that the primary results are robust to 
contamination due to motion artifact. 
 
 First-level mass-univariate whole-brain activation analyses were conducted 
using the general linear model in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).  Events 
were modeled using the canonical hemodynamic response function and its temporal 
derivative.  All first-level GLMs included motion parameters as covariates of no 
interest.  High-pass temporal filtering was applied with a cutoff of 0.0078 Hz (1/128 
seconds) in order to remove low frequency drift in the time-series.  Contrast images 
were computed for the general contrast of all speech conditions vs. rest as well as the 
contrast of forward vs backward speech for all first-level analyses. Within second-
level analyses, we covaried for age at fMRI scan and mean FD.  For ROI analyses, we 
used independent functionally-defined ROIs related to language processing by 
extracting bilateral frontal and temporal cortex clusters from a meta-analysis map 
downloaded from www.neurosynth.org (Yarkoni et al., 2011) of 725 studies 
associated with the feature ‘language’ (see top of Fig 2E).  These ROIs were further 
constrained to only voxels labeled as frontal or temporal cortex in the MNI atlas 
packaged with the FSL software package (http://fsl.fmrib.ox.ac.uk/fsl/).  All ROI 
analyses were conducted as ANCOVAs covarying for mean FD and age at scanning.  
For any ROIs where there was indication of violation of homogeneity of variance via 
Levene’s test, we re-ran such analyses using Welch’s ANOVA (i.e. using the 
oneway.test function in R). For all second-level whole-brain analyses we used a 
cluster-forming threshold of p<0.025 and corrected for multiple comparisons at the 
cluster-level to obtain an FDR q<0.05 (Chumbley et al., 2010).  
 
 
Multi-Voxel Pattern Similarity Analyses 
 

To quantitatively assess the similarity of multi-voxel activation patterns 
estimated at the group-level, we computed Pearson’s r correlation between all group’s 
second-level t-statistic map, masked for only voxels within the NeuroSynth language 
map (n=820 voxels).  These second-level activation pattern similarity results were 
visualized as a correlation matrix, and it was visually clear that TD, ASD Good, and 
LD/DD groups were all highly similar in activation patterns, and ASD Poor was 
markedly most dissimilar to these other groups. In order to better visualize the 
separation of ASD Poor from all other groups, the resulting similiarity (correlation) 
matrix was first converted into a dissimilarity matrix (i.e. 1-r) and then entered into 
canonical multidimensional scaling to reduce dimensionality down to a 2-dimensions.  
To specifically test whether ASD Poor was highly dissimilar, we converted Pearson’s 
r correlations to z-statistics using Fisher’s z transformation (using the paired.r 
function within the psych package in R: http://bit.ly/1xtgf9i)), and then assessed 
statistical significance of the difference between all pairwise group-comparisons.  Of 
the 12 total pairwise comparisons, the 6 comparisons involving a difference between a 
[ASD Poor vs non-ASD Poor] correlation vs a [non-ASD Poor vs non-ASD Poor] 
correlation, were the top 6 most highly enriched comparisons with all p < 5.64 x 10-14 
(Table S4). 

 
We also compared multi-voxel pattern similarity of individual subject 

activation maps (i.e. 1st-level t-statistic maps for all speech vs rest) to specific 
NeuroSynth feature maps constructed specifically for the purposes of isolating neural 



systems for either general auditory processing outside the domain of language and 
speech or isolating neural systems that are specific to language and speech.  To 
achieve these aims we used NeuroSynth core tools in Python 
(https://github.com/neurosynth/neurosynth), to run 2 meta-analyses not found on the 
general NeuroSynth website.  The first includes only studies associated with the term 
‘auditory’ but excludes any of those studies which also appear for the terms 
‘language’ or ‘speech’ (n=601 total studies; ‘Auditory AND NOT (Language OR 
Speech)’).  This meta-analysis highlights neural systems for general auditory 
processing, excluding the influence of studies highlighted in the ‘language’ or 
‘speech’ features. The second meta-analysis was conducted on to isolate neural 
systems from studies associated with both the terms ‘language’ and ‘speech’ (n=145 
total studies; ‘Language AND Speech’).  This meta-analysis highlights neural systems 
found in studies that highly refer to both the terms ‘language’ and ‘speech’. These 
meta-analyses produced whole-brain z-statistic maps that we could then compare 
against each individual subject’s activation map.  For each individual, we computed 
Pearson’s r correlation for activation similarity within voxel masks defined by each 
meta-analysis (i.e. only voxels from the meta-analyses that survive at FDR q<0.01).  
We then tested for group-differences using ANCOVAs, covarying for mean FD and 
age at scanning.   
 
 
Supplementary Analysis of Primary Auditory Cortex 
 

Supplementary analysis of activation within primary auditory cortex was done 
by first defining a meta-analytic ROI of primary auditory cortex.  This was achieved 
by using NeuroSynth core tools in Python to run a meta-analysis on the combination 
of all studies from the features ‘auditory cortex’, ‘auditory cortices’, and ‘primary 
auditory’.  Then we identified the peak voxel from this meta-analysis in left 
hemisphere superior temporal gyrus (MNI x = -48, y = -22, z = 6; z-stat = 22.91) and 
constructed a 10mm sphere around this centroid.  This spherical peak ROI was then 
used for extracting percent signal change from the all speech vs rest contrast for all 
groups.  Comparison of group-differences was done via an ANCOVA covarying for 
mean FD and age at scanning.  Furthermore, we specifically tested whether each 
group showed activation greater than 0 via a one-sample t-test with a one-tailed p-
value due to the directional nature of our hypothesis that primary auditory cortex 
activation should be greater than 0 (Fig S3).  
 
Brain-Behavior Relationship Analysis 

 
To assess brain-behavior relationships we used partial least squares correlation 

(PLSC) analysis (Krishnan et al., 2011; McIntosh and Lobaugh, 2004).  PLSC is 
widely used in the neuroimaging literature, particularly when explaining multivariate 
neural responses in terms of multivariate behavioral patterns of variation or a design 
matrix.  Given that the current dataset is massively multivariate both in terms of brain 
and behavioral datasets, and because there is known correlational structure amongst 
the measured behavioral variables for language variation (see Fig S2), we used PLSC 
to elucidate how variation in neural response to speech across large-scale neural 
systems covaries with behavioral variation across measures of language development.  
PLSC allows for identifying such relationships by finding latent brain-behavioral 
variable pairs (LV) that maximally explain covariation in the dataset and for which 



are uncorrelated with other latent brain-behavior variable pairs.  The strength of such 
covariation is denoted by the singular value (d) for each brain-behavior LV, and 
hypothesis tests can be made via using permutation tests on the singular values. 
Furthermore, identifying brain regions that most strongly contribute to each LV pair is 
made via bootstrapping, whereby a bootstrap ratio is created for each voxel, and 
represents the reliability of that voxel for contributing strongly to the LV pattern 
identified.  The bootstrap ratio is roughly equivalent to a Z statistic and can be used to 
threshold data to find voxels that reliably contribute to an LV pair.  

 
The PLSC analyses reported here were implemented within the plsgui Matlab 

toolbox (www.rotman-baycrest.on.ca/pls/).  Here we input first-level all speech versus 
rest contrast images into the PLSC.  For behavioral data, we input EL and RL 
subscales of the Mullen, as well as the Vineland communication subscale taken from 
individual’s intake and outcome time-points.  For statistical inference on identified 
brain-behavior LV pairs, a permutation test was run with 10,000 permutations.  To 
identify reliably contributing voxels for brain-behavior LVs and to compute 95% 
confidence intervals (CIs) on brain-behavior correlations, bootstrapping was used 
with 10,000 resamples.  To show voxels that most reliably contribute to significant 
brain-behavior LVs, we thresholded data for visualization at a bootstrap ratio (BSR) 
of 1.96 and -1.96.  The strength of brain-behavior correlations for significant LVs was 
displayed as a bar graph with 95% bootstrap CIs as errorbars.  
 
Classifier Analyses 

 
Finally, for classifier analyses we used partial least squares linear discriminant 

analyses with 5-fold cross validation implemented with the Matlab toolbox libPLS 
(http://www.libpls.net).  Features for the classifiers consisted of behavioral measures 
taken from the earliest clinical intake time-point or using fMRI speech-related 
activation (i.e. percent signal chance for all speech vs. rest) from all voxels extracted 
from the NeuroSynth defined left hemisphere superior temporal cortex ROI.  Each 
feature was z-scored before being input into the classifier.  Four classifiers were tested 
using the following features: 1) ADOS total scores, 2) all Mullen subscale T-scores, 
Vineland subscale standard scores, and ADOS total scores (i.e. ‘clinical’ measures), 
3) fMRI activation, and 4) a combination of all clinical measures (Mullen, Vineland, 
and ADOS) plus fMRI activation features.  The distinction being made in each 
classifier was the distinction between ASD Poor versus ASD Good.  Receiver 
operating characteristic (ROC) curves and area under the curve (AUC) values were 
computed for each classifier in order to determine which of the four classifiers 
performed best, and accuracy, sensitivity, and specificity were also computed as 
measures of classifier performance. 
  



 
 
Fig. S1. Developmental trajectories for Mullen Fine Motor and Vineland 
subscales. 
 
This figure shows developmental trajectories for all groups (TD, red; ASD Good, 
blue; ASD Poor, purple, LD/DD green) on the Mullen fine motor subscale (FM) (A), 
Vineland communication (B), Vineland socialization (C), Vineland motor skills (D), 
Vineland daily living skills (E), and Vineland adaptive behavior (F) subscales.  Plots 
show the group-level trajectory (solid line) along with 95% confidence bands, 
estimated from mixed-effect modeling after taking into account individual-level 
trajectories (dotted lines, unfilled circles).  Related to Figure 1. 
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Fig. S2. Correlations between all behavioral measures at intake and outcome 
assessments and correlations between all measure’s developmental trajectories.   
 
Panel A shows the correlation matrices for each group across all behavioral measures.  
Correlations for the intake assessment are shown in the left column of the figure, 
while correlations for the outcome assessment are shown in the right column. Panel B 
shows the correlation matrices for each group across all behavioral measures and is 
computed based on individual-level developmental trajectories estimated within 
mixed-effect models.  Abbreviations:  EL, Mullen expressive language; RL, Mullen 
receptive language; FM, Mullen fine motor; VR, Mullen visual reception; 
VineComm, Vineland communication; VineSoc, Vineland socialization; VineDly, 
Vineland daily living skills; VineMtr, Vineland motor skills; VineAdpBeh, Vineland 
adaptive behavior, ADOS, Autism Diagnostic Observation Schedule; TD, typical 
development; ASD, autism spectrum disorder; LD/DD, language/developmental 
delay.  Related to Figure 1. 
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Fig S3. ROI analysis for left hemisphere primary auditory cortex and montage of 
single-subject activations in ASD Poor. 
 
This figure shows in panel A, Δ% signal change extracted from the all speech vs rest 
contrast specifically for the ROI of left hemisphere primary auditory cortex. Black 
dots indicate the mean and errorbars indicate 95% confidence intervals. This ROI was 
defined by taking a 10mm sphere from the peak voxel (MNI x = -48, y = -22, z = 6; z-
stat = 22.91) of a NeuroSynth meta-analysis combining studies from the features 
‘auditory cortex’, ‘auditory cortices’, and ‘primary auditory’.  Here we did not find 
any significant differences between-groups in an ANCOVA (F(3,97) = 0.89, p = 0.44, 
partial η2 = 0.027). TD, LD/DD, and ASD Good all showed sizeable effect sizes for 
non-zero activation in this region (e.g., Cohen’s d > 0.54, one-tailed p < 0.006).  For 
ASD Poor, a one-sample t-test shows that there is weak group-level activation at 
trend-level significance for being different from 0 (t(23) = 1.67, one-tailed p = 0.054, 
Cohen’s d = 0.33)  Panel B shows a whole-brain analysis on ASD Poor, where 
activations are visualized at the very liberal threshold of p<0.05 uncorrected, in order 
to show that subtle group-level activation in left hemisphere primary auditory cortex 
is present. Panel C is a montage showing all speech vs rest activation in surface 
renderings of the lateral right and left hemispheres of each individual in the ASD Poor 
group (activations are thresholded at p<0.025 uncorrected).  Related to Figure 2. 
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Fig. S4. Dot plots showing individual data points for ROI activation and multi-
voxel pattern similarity analyses   

These plots show individual data points as colored dots (red = TD, green = LD/DD, 
blue = ASD Good, purple = ASD Poor) for the ROI activation analyses (panels A-D), 
and for the multi-voxel pattern similarity analyses (panels E-F).  Black dots in each 
plot represent the mean and errorbars represent 95% confidence intervals.  Related to 
Figure 2. 
  



-0.05

0.00

0.05

1 2 3 4
factor(GrpRevision)

S
pe
ec
h_
vs
_R
es
t_
LH
fro
nt
al

factor(GrpRevision)

1

2

3

4

-0.1

0.0

0.1

1 2 3 4
factor(GrpRevision)

S
pe
ec
h_
vs
_R
es
t_
R
H
fro
nt
al

factor(GrpRevision)

1

2

3

4

-0.2

-0.1

0.0

0.1

0.2

1 2 3 4
factor(GrpRevision)

S
pe
ec
h_
vs
_R
es
t_
R
H
te
m
p

factor(GrpRevision)

1

2

3

4

-0.1

0.0

0.1

1 2 3 4
factor(GrpRevision)

S
pe
ec
h_
vs
_R
es
t_
LH
te
m
p

factor(GrpRevision)

1

2

3

4

Δ
 %

 S
ig

na
l C

ha
ng

e 
[S

pe
ec

h 
vs

. R
es

t]
RH ‘Language’ Temporal ROILH ‘Language’ Temporal ROI

LH ‘Language’ Frontal ROI RH ‘Language’ Frontal ROI

A B

C D

0.10

-0.10

0

Δ
 %

 S
ig

na
l C

ha
ng

e 
[S

pe
ec

h 
vs

. R
es

t] 0.10

-0.10

0

0.20

-0.20

0.05

-0.05

0

Δ
 %

 S
ig

na
l C

ha
ng

e 
[S

pe
ec

h 
vs

. R
es

t]

0.10

-0.10

0

Δ
 %

 S
ig

na
l C

ha
ng

e 
[S

pe
ec

h 
vs

. R
es

t]

TD LD/DD
ASD

Good Poor

TD LD/DD
ASD

Good Poor TD LD/DD
ASD

Good Poor

TD LD/DD
ASD

Good Poor

-0.4

-0.2

0.0

0.2

0.4

0.6

1 2 3 4
factor(GrpRevision)

M
V
P
A
_A
ud
ito
ry
_n
ot
_L
an
g_
or
_S
pe
ec
h_
R
O
I_
A
ud
ito
ry
_n
ot
_L
an
g_
or
_S
pe
ec
h_
r2
z

factor(GrpRevision)

1

2

3

4

-0.2

-0.1

0.0

0.1

0.2

1 2 3 4
factor(GrpRevision)

M
V
P
A
_L
an
g_
an
d_
S
pe
ec
h_
R
O
I_
La
ng
_a
nd
_S
pe
ec
h_
r2
z

factor(GrpRevision)

1

2

3

40

M
ul

ti-
Vo

xe
l P

at
te

rn
 S

im
ila

rit
y 

(z
)

0.2

0.1

-0.1

-0.2

All Speech vs Rest Similarity with
‘Language AND Speech’

0.4

0.2

0

-0.2

M
ul

ti-
Vo

xe
l P

at
te

rn
 S

im
ila

rit
y 

(z
)

0.6

-0.4

All Speech vs Rest Similarity with
‘Auditory AND NOT (Language OR Speech)’

TD LD/DD
ASD

Good Poor

TD LD/DD
ASD

Good Poor

E

F

Supp Fig Final Revision



 

Fig. S5. Quantification of in-scanner head motion.  

This figure plots the metric of mean framewise displacement (meanFD) for all 
individuals in all groups.  Panel A shows mean FD for all individuals, while panel B 
shows mean FD after motion yoking through removal of any individuals with mean 
FD > 0.1mm (number excluded:  n=5 TD; n=7 LD/DD, n=7 ASD Good; n=0 ASD 
Poor).  This range restriction on head movement was sufficient for removing the 
group-difference in mean FD (χ2(3,80) = 5.07, p = 0.16).  We then re-ran the primary 
ANCOVA on the NeuroSynth left-hemisphere temporal ROI and found that in this 
motion control analysis, that the group difference remained and that the effect size 
was larger than in the analysis on all individuals (F(3,78) = 5.36, p = 0.002, partial η2 
= 0.171).  Related to Experimental Procedures. 
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Fig. S6. Forward vs Backward speech ROI and whole-brain analysis results.   
 
This figure shows neural response to the contrast of forward vs backwards speech 
across all groups.  Panels A-D show the difference in BOLD percent signal change for 
this contrast from an ROI analysis using the frontal and temporal cortex regions 
derived from the NeuroSynth meta-analysis map for ‘language’.  Black dots represent 
the mean and errorbars represent 95% confidence intervals. The TD (red), LD/DD 
(green), ASD Good (blue), ASD Poor (purple) groups all show similar levels of Δ% 
signal change, indicating that these canonical language regions are not differentiated 
by group status. The top row of Panel E shows the full spatial extent of the 
NeuroSynth ‘language’ meta-analysis map along the medial wall of the brain.  The 
subsequent rows within panel E show results from within-group activation analyses 
corrected at the whole-brain level at FDR q<0.05.  The bottom row of panel E shows 
the whole-brain analysis for the specific contrast of TD versus all other groups.  
Related to Figure 2. 
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