Supplemental information to Salcher et al.:

- **Table S1:** Details of the isolation experiments conducted in Lake Zurich, Switzerland during 2010-2013.
- **Table S2:** Genes involved in methylotrophic pathways present in the genomes of *Ca.* Methylopumilus planktonicus' MMS-2-53 and *Ca.* Methylopumilus turicensis' MMS-10A-171.
- **Figure S1:** Relative abundances (in % of DAPI) of microbes affiliated with LD28 (*'Ca.* Methylopumilus planktonicus', upper panel) and PRD01a001B (*'Ca.* Methylopumilus turicensis', lower panel) determined in Lake Zurich, Switzerland, during the investigation period 2008-2011.
- **Figure S2:** Physical (A: water temperature, F: sphaerical irradiance), chemical (B: oxygen content, C: concentration of PO₄-P, D: NO₃-N, E: NH₄-N), and biological (G: concentration of total chlorophyll *a*, H: chlorophyll *a* associated with the cyanobacterium *Planktothrix rubescens*, I: chlorophyll *a* associated with diatoms) parameters determined in Lake Zurich, Switzerland, during the investigation period 2008-2011.
- **Figure S3:** Bootstrapped maximum likelihood tree (GTR-Gamma model) of the 16S rDNA of microbes affiliated with LD28 (*'Ca.* Methylopumilus planktonicus). Sequences in bold represent isolated strains from Lake Zurich (see table S1 for abbreviations). The scale bar at the bottom represents 1 % estimated sequence divergence.
- **Figure S4:** Bootstrapped maximum likelihood tree (GTR-Gamma model) of the 16S rDNA of microbes affiliated with PRD01a001B (*'Ca.* Methylopumilus turicensis). Sequences in bold represent isolated strains from Lake Zurich (see table S1 for abbreviations). The scale bar at the bottom represents 1 % estimated sequence divergence.
- **Figure S5:** Graphic circular map of genome of '*Ca.* Methylopumilus planktonicus' strain MMS-2-53. From outside to the center: Genes on forward strand, genes on reverse strand (both coloured in COG categories), BLASTx comparison to 3 closely related taxa ('*Ca.* Methylopumilus turicensis' strain MMS-10A-171, HTCC2181 of the marine OM43 lineage, and *Methylotenera mobilis* JLW8), GC content, GC skew. COG classification was done with the WebMGA server (Wu et al., 2011) and the genome was displayed with the CGView server (Grant et al. 2008).
- **Figure S6:** Graphic circular map of genome of '*Ca.* Methylopumilus turicensis strain MMS-10A-171. From outside to the center: Genes on forward strand, genes on reverse strand (both coloured in COG categories), BLASTx comparison to 3 closely related taxa ('*Ca.* Methylopumilus planktonicus' MMS-2-53, HTCC2181 of the marine OM43 lineage, and *Methylotenera mobilis* JLW8), GC content, GC skew. COG classification was done with the WebMGA server (Wu et al., 2011) and the genome was displayed with the CGView server (Grant et al. 2008).

Date	water temp	med	# wells inoc	# cells /well	# + wells	# pure cult	# Meth	V _{pos}	Vpure	VMeth	label	Acc. No.	Meth affil
19/08/2010	19	1	288	1	74	19	-	29.7	6.8	-	MMS-1	-	-
14/10/2010	15.1	1	95	1	10	6	1	11.1	6.5	1.1	MMS-2	LN681407	M. pla.
11/05/2011	16.7	1	95	1.4	-	-	-	-	-	-	MMS-3	-	-
25/05/2011	13.2	1	95	1.4	40	2	1	40.3	1.6	0.8	MMS-4	LN681408	M. pla.
07/06/2011	19.1	1	95	1.4	8	-	-	6.5	-	-	MMS-5	-	-
22/06/2011	19.7	1	95	1.4	11	-	-	9.1	-	-	MMS-6	-	-
06/07/2011	21.5	1	95	1.4	42	-	-	43.0	-	-	MMS-7	-	-
19/07/2011	21.0	1	95	1.4	32	1	-	30.3	0.8	-	MMS-8	-	-
04/08/2011	20.6	2	95	1.4	26	-	-	23.6	-	-	MMS-9	-	-
17/08/2011	21.1	3	95	1.4	39	-	-	38.9	-	-	MMS-10	-	-
24/08/2011	24.7	3	95	1.4	25	-	-	22.5	-	-	MMS-11	-	-
08/09/2011	20.9	3	95	1.4	56	1	1	65.6	0.8	0.8	MMS-12	LN681409	M. pla.
21/09/2011	19.4	3	167	3.2	94	4	4	25.5	0.8	0.8	MMS-13	LN681410-13	M. pla.
05/10/2011	19.4	3	119	2.8	79	7	3	38.8	2.2	0.9	MMS-14	LN681414-16	M. pla.
18/10/2011	15.2	3	119	2.8	88	24	17	47.9	8.0	5.5	MMS-15	LN681417-33	M. pla.
03/11/2011	12.7	3	119	2.8	67	3	2	29.5	0.9	0.6	MMS-16	LN681434-35	M. pla.
16/11/2011	11.3	3	119	2.8	94	18	16	55.6	5.8	5.1	MMS-17	LN681436-51	M. pla.
30/11/2011	9.3	3	119	2.8	21	15	13	6.9	4.8	4.1	MMS-18	LN681452-64	M. pla.
14/12/2011	7.4	3	192	2.8	63	18	18	26.9	5.8	5.8	MMS-19	LN681465-82	M. pla.
10/05/2012	12.1	4	191	2.4	28	25	-	6.7	6.5	-	MMS-20	-	-
25/05/2012	13.5	4	168	2.0	18	17	-	5.7	5.3	-	MMS-21	-	-
01/06/2012	13.5	4	144	2.7	-	-	-	-	-	-	MMS-22	-	-
01/06/2012	13.5	5	144	1.7	-	-	-	-	-	-	MMS-F3	-	-
20/06/2012	17.8	6	24	2.3	10	10	-	23.1	23.1	-	MMS-5H	-	-
20/06/2012	17.8	4	72	2.3	2	2	-	1.2	1.2	-	MMS-3A	-	-
20/06/2012	17.8	4	72	2.3	4	3	-	2.5	1.8	-	MMS-4A	-	-
20/06/2012	17.8	4	72	2.3	1	1	-	0.6	0.6	-	MMS-5A2	-	-
20/06/2012	17.8	5	24	2.3	1	1	-	1.8	1.8	-	MMS-2FG3	-	-
20/06/2012	17.8	5	48	2.3	4	3	-	3.7	2.8	-	MMS-2FG3b	-	-
14/08/2012	23.2	4	96	2	5	5	-	2.7	2.7	-	MMS-7A	-	-
14/08/2012	23.2	4	120	2	14	13	-	6.2	5.7	-	MMS-8A	-	-
14/08/2012	23.2	4	167	1.9	4	3	-	1.3	1.0	-	MMS-9A	-	-
14/08/2012	23.2	4	192	1.8	40	39	12	13.4	13.0	7.4	MMS-10A	LN681522-33	M. tur.
15/08/2012	23.2	4	238	1.8	-	-	-	-	-	-	MMS-11A	-	-
31/08/2012	23.2	4	288	2.4	10	8	3	1.5	1.2	0.43	MMS-12A	LN681483-85	M. pla.
12/11/2012	11.5	7	240	2.3	185	6	-	63.1	1.3	-	MMS-12Awh	-	-
12/11/2012	11.5	7	240	2.3	171	58	1	53.4	12.1	0.2	MMS-14A	LN681486	M. pla.
22/05/2013	13.2	8	120	1.6	20	11	-	11.4	6.0	-	MMS-IA	-	-
22/05/2013	13.2	9	120	1.6	40	22	-	25.3	13.3	-	MMS-IB	-	-
23/05/2013	13.2	9	168	2.0	128	95	2	71.8	44.5	0.6	MMS-IIA	LN681487-88	M. pla.
23/05/2013	13.2	8	168	2.0	92	49	-	39.7	17.2	-	MMS-IIB	-	-
03/06/2013	12.3	10	264	1.7	264	191	-	100	74.4	-	MMS-III	-	-
13/06/2013	15.9	10	288	1.8	74	47	-	17.0	10.2	-	MMS-IV	-	-
15/07/2013	20.1	11	144	1.8	14	6	1	5.8	2.4	0.4	MMS-VA	LN681489	M. pla.
15/07/2013	20.1	12	144	1.8	51	30	19	25.0	13.4	8.1	MMS-VB	LN681490- 508	M. pla.
14/08/2013	24.6	12	264	1.7	28	25	13	6.5	5.8	3.0	MMS-VI	LN681509-21	M. pla.
SUM			6507		2077	788	127		_	_			
ΜΕΔΝ				20				24.8	87	27			

Table S1: Details of the isolation experiments conducted in Lake Zurich, Switzerland during 2010-2013.

Abbreviations: water temp, water temperature, med, medium; # wells inoc, number of wells inoculated; # cells/well, number of cells inoculated per well; # + wells, number of wells with cells growing; # pure cult, number of pure cultures; # Meth, number of cultures affiliated with *Methylophilaceae*; V_{pos}, total viability; V_{pure}, viability of pure cultures; V_{meth}, viability of isolates affiliated with *Methylophilaceae*; label, labeling scheme for pure cultures; Acc No, accession numbers; Meth affil, affiliation of isolated *Methylophilaceae*, M. pla., *'Candidatus* Methylopumilus planktonicus' (LD28); M. tur., *'Candidatus* Methylopumilus turicensis' (PRD01a001B).

Media:

1: filtered and autoclaved lake water (LW) + minimal carbon medium (MC)#1 2: LW + MC#1 + Vitamins (V) 3: LW + MC#1 + V + amino acids (AA) 4: LW + 10x MC#2 + V + AA 5: artificial lake water (ALW) + TES + 10x MC#2 + medium 4 (1:1) 6: ALW + 10x MC#2 7: LW + 10x MC#2 + MC#3 + V + AA 8: LW + MC#2 + MC#3 + inorganic basal medium (IBM) + stock4 + V + 10xAA 9: LW + pyruvate (50 μ M) + urea (0.5 μ M) + MC#4 + V + 10xAA 10: LW+ V + 10xAA 11: LW + MC#2 + pyruvate (50 μ M) + urea (0.5 μ M) + V + 10xAA 12: LW + pyruvate (50 μ M) + urea (0.5 μ M) + V + 10xAA

Minimal carbon medium (MC)#1: 1 μ M NH₄Cl, 0.1 μ M K₂HPO₄, 11.1 μ M D-glucose, 13.3 μ M D-ribose, 22.7 μ M pyruvate, 21.7 μ M glycerol, 9 μ M N-acetylglucosamine, 0.1 μ M glutamate, 0.1 μ M glutamine, 0.05 μ M arginine, 0.1 μ M methionine, 0.1 μ M glycine

MC#2: 1 μ M NH₄Cl, 0.1 μ M K₂HPO₄, 55.5 μ M D-glucose, 66.6 μ M D-ribose, 217.2 μ M formate, 217.2 μ M ethanol, 84.7 μ M succinate, 131.5 μ M glycolate, 108.6 μ M glycerol, 45.2 μ M N-acetylglucosamine

MC#3: 62.1 μM putrescine, 39.3 μM spermidine, 66.6 μM D-xylose, 66.6 μM arabinose

MC#4: 30 µM NH4Cl, 50 µM oxaloacetate, 50 µM taurine, 1 µM betaine, 40 µM CaCl2

Amino acid solution (AA): 0.5 µM isoleucine, leucine, lysine, methionine, alanine, phenylalanine, threonine, tryptophane, valine, arginine, histidine, asparagine, aspartate, cysteine, proline, serine, tyrosine, 2 µM glutamine, glutamate, glycine

Vitamine solution (V): 0.593 μ M thiamine, 0.08 μ M niacin, 0.000074 μ M cobalamine, 0.005 μ M para-amino benzoic acid, 0.074 μ M pyridoxine, 0.081 μ M pantothenic acid, 0.004 μ M biotin, 0.004 μ M folic acid, 0.555 μ M myo-inositol

Artificial lake water (ALW, Zotina et al. 2003): 2 mM NaHCO₃, 30 μ M KNO₃, 200 μ M MgSO₄, 40 μ M CaCl₂, 160 μ M CaSO₄, 30 μ M NH₄Cl, 0.322 μ M K₂HPO₄

TES (trace element solution): 12 μ M FeCl₃, 16 μ M H₃BO₃, 1 μ M MnCl₂, 0.1 μ M ZnSO₄, 0.04 μ M CuSO₄, 0.04 μ M CoCl₂, 0.03 μ M NaMoO₄, 0.4 μ M NiCl₂,

Inorganic basal medium (IBM, Hahn et al. 2003): 304 μ M MgSO₄, 182 μ M Ca(NO₃)₂, 190 μ M NaHCO₃, 20 μ M KCI, 16 μ M K₂HP₄, 17 μ M Na₂EDTA-Fe, 0.1 ml TES

References:

Hahn M, Lünsdorf H, Wu Q, Schauer M, Höfle M, Boenigk J *et al* (2003). Isolation of novel ultramicrobacteria classified as *Actinobacteria* from five freshwater habitats in Europe and Asia. *Appl Environ Microbiol* **69**: 1442-1451.

Zotina T, Köster O, Jüttner F (2003). Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by *Planktothrix rubescens* under low irradiance. *Freshwater Biol* **48**: 1859-1872.

Table S2: Genes involved in methylotrophic pathways present in the genomes of *'Ca.* Methylopumilus planktonicus' MMS-2-53 (Acc. No. LN827929) and *'Ca.* Methylopumilus turicensis' MMS-10A-171 (Acc. No LN794158).

Pathway			<i>'Ca.</i> M.	'Са. М.
	Gene	Protein/function	planktonicus'	turicensis'
thanol oxidation			MMS-2-53	MMS-10A-171
	xoxF	Homologue of MDH large subunit	BN1208_1208	BN1209_1575
	xoxJ	unknown	BN1208_1207	BN1209_1574
	xoxG	cytochrome c, electron acceptor from MDH	BN1208_1206	BN1209_1572, BN1209_1573
	mxaR	unknown	BN1208_0638	BN1209_0567
	mxaS	unknown	BN1208_0637	BN1209_0566
	mxaA	Ca2+ insertion into MDH	BN1208_0636	BN1209_0565
	mxaC	Ca2+ insertion into MDH	BN1208_0635	BN1209_0564
	mxaK	Ca2+ insertion into MDH	BN1208_0634	BN1209_0563
	mxaL	Ca2+ insertion into MDH	BN1208_0633	BN1209_0562
	mxaD	unknown	BN1208_0373	BN1209_0453
Me	pqqB	PQQ biosynthesis	BN1208_0720	BN1209_0756
	pqqC	PQQ biosynthesis	BN1208_0721	BN1209_0757
	pqqD	PQQ biosynthesis	BN1208_0722	BN1209_0758
	pqqE	PQQ biosynthesis	BN1208_0723	BN1209_0759
	pqqF	PQQ biosynthesis	BN1208_1061	BN1209_1323
	pqqG	PQQ biosynthesis	BN1208_1060	BN1209_1322
form- cidation	folD	Methylenetetrahydrofolate dehydrogenase	BN1208_0070	BN1209_0056
		(NADP+) (EC 1.5.1.5) / Methylenetetra-		
	<i>(</i>]	hydrofolate cyclonydrolase (EC 3.5.4.9)	DN4000 0700	
be) 0 e	tns (F	Formate-tetranydrotolate ligase	BN1208_0733	-
H₄F-link Ildehyde	metF	5,10-methylenetetranydrofolate reductase	BN1208_0111	BN1209_0102, BN1209_0103
	ygfZ	glycine cleavage T protein (aminomethyl	BN1208_0632	BN1209_0560
	fhcA	(Idlisieldse)		BN1200 0742
	fhcD	formyltransferase/hydrolase complex subunit A	-	BN1209_0742
	fhcC	formyltransferase/hydrolase complex subunit C	-	BN1209_0741
de oxidation	mntG	beta-ribofuranosylamino-benzene 5-nboshbate	_	BN1209_0740
	mptO	synthase	-	DIV1203_0744
	mtdB	methylene H ₄ MPT dehydrogenase	-	BN1209 0745
	orfY	unknown	-	BN1209 0746
	mch	methenyl H ₄ MPT cyclohydrolase	-	BN1209 0747
	orf5	biosynthesis of H ₄ MPT	-	
ehy	orf7	unknown	-	BN1209_0749
ald	fae	formaldehyde activating enzyme	-	BN1209_1682
4MPT-linked forma	orf17	unknown	-	BN1209_0773
	orf1	unknown	-	BN1209_0774
	orf9	biosynthesis of H ₄ MPT	-	BN1209_0775
	pabB	para-aminobenzoate synthase component I	-	BN1209_0776,
				BN1209_1662
	orf21	biosynthesis of H ₄ MPT	-	BN1209_0777
I	pcbD	unknown	-	BN1209_0778
	orf22	biosynthesis of H ₄ MPT	-	BN1209_0842
	orf19	biosynthesis of H ₄ MPT	-	BN1209_0841
	orf20	biosynthesis of H ₄ MPT	-	BN1209_0840
	afp	dihydromethanopterin reductase	-	BN1209_0839

			<i>"Са.</i> М.	<i>'Ca.</i> М.
Pathway	Gene	Protein/function	planktonicus'	turicensis'
			MMS-2-53	MMS-10A-171
Formate oxidation	fdhA	formate dehydrogenase alpha subunit	BN1208_1192	BN1209_0677
	fdhB	formate dehydrogenase beta subunit	BN1208_1193	BN1209_0676, BN1209_1191
	fdhC	formate dehydrogenase gamma subunit	BN1208 1194	BN1209_0675
	fdhD	formate dehydrogenase accessory protein	BN1208 1191	BN1209_0678
	fdhE	formate dehydrogenase delta subunit	BN1208_1190	BN1209_0679
nate (RuMP) lehyde dation	hps	3-hexulose-6-phosphate synthase	BN1208_0845	BN1209_0202,
				BN1209_0771
	hpi	6-phospho-3-hexuloisomerase	BN1208_0844	BN1209_0772
	tal	trancoldologo	BN1208_0846,	BN1209_0770
	เลเ	liansaluolase	BN1208_0901	
	pgi	glucose 6-phosphate isomerase	BN1208_0816	BN1209_0914
spl	zwf	glucose 6-phosphate dehydrogenase	BN1208_0649	BN1209_0580
°° € 2	pgl	6-phosphogluconolactonase	BN1208_0650	BN1209_0581
i to b	gndA	6-phosphogluconolactonase	BN1208_0651	BN1209_0582
or or	gndB	6-phosphogluconate dehydrogenase (NADP)	-	BN1209_0428
i te u	edd	6-phosphogluconate dehydratase	BN1208_1051	BN1209_1306
ssi	eda	2-dehydro-3-deoxy-phosphogluconate aldolase	BN1208_1050	BN1209_1305
a C los	tkt	transketolase	BN1208_1157	BN1209_1513
Ribul	rpe	ribulose-phosphate 3-epimerase	BN1208_1297	BN1209_1663
	nni	ribose 5 phosphate isomerase	BN1208_0100,	BN1209_0087,
	μμι	noose-o-phosphale isotherase	BN1208_0677	BN1209_0663

Figure S1: Relative abundances (in % of DAPI) of microbes affiliated with LD28 ('*Cand.* Methylopumilus planktonicus', upper panel) and PRD01a001B (*'Cand.* Methylopumilus turicensis', lower panel) determined in Lake Zurich, Switzerland, during the investigation period 2008-2011.

Figure S2: Physical, chemical, and biological parameters determined in Lake Zurich, Switzerland, during the investigation period 2008-2011.

Figure S3: Bootstrapped maximum likelihood tree (GTR-Gamma model) of the 16S rDNA of microbes affiliated with LD28 ('Ca. Methylopumilus planktonicus). Sequences in bold represent isolated strains from Lake Zurich (see table S1 for abbreviations). The scale bar at the bottom represents 1 % estimated sequence divergence.

- LN681515, MMS-VI-150; LN681509, MMS-VI-17; LN681520. MMS-VI-255
- LN681436, MMS-17-4LN681437, MMS-17-31; LN681518, MMS-VI-180;
- LN681415, MMS-14-117; LN681416, MMS-14-118, LN681428, MMS-15-101; LN681494, MMS-VB-40, LN681500, MMS-VB-95; LN681508, MMS-VB-118
- LN681484, MMS-12A-61; LN681485, MMS-12A-68, LN681411, MMS-13-104; LN681414, MMS-14-89, LN681424, MMS-15-89; LN681425, MMS-15-90, LN681426, MMS-15-93; LN681429, MMS-15-102, LN681430, MMS-15-104; LN681432, MMS-15-107, LN681447, MMS-17-107; LN681451, MMS-17-119, LN681457, MMS-18-100; LN681460, MMS-18-107, LN681473, MMS-19-97; LN681475, MMS_19-102, LN681480, MMS-19-116; LN681490, MMS-VB-8, LN681501, MMS-VB-100; LN681505, MMS-VB-110, LN681511, MMS-VI-33; LN681514, MMS-VI-127
- LN681439, MMS-17-50; LN681450, MMS-17-116, LN681456, MMS-18-84; LN681459, MMS-18-105, LN681461, MMS-18-111; LN681463, MMS-18-117, LN681464, MMS-18-118; LN681465, MMS-19-11, LN681469, MMS-19-75; LN681470, MMS-19-84, LN6814571, MMS-19-94; LN681472, MMS-19-96, LN681477, MMS-19-110; LN681481, MMS-19-117, LN681482, MMS-19-119; LN681487, MMS-IIA-119
- LN681422, MMS-15-83; LN681448, MMS-17-112, LN681468, MMS-19-48; LN681476, MMS-19-104
- LN681483, MMS-12A-55; LN681421, MMS-15-78, LN681423, MMS-15-88; LN681431, MMS-15-106, LN681446, MMS-17-103; LN681462, MMS-18-116, LN681474, MMS-19-100; LN681502, MMS-VB-103, LN681503, MMS-VB-105

100%

Figure S4: Bootstrapped maximum likelihood tree (GTR-Gamma model) of the 16S rDNA of microbes affiliated with PRD01a001B (*'Ca.* Methylopumilus turicensis). Sequences in bold represent isolated strains from Lake Zurich (see table S1 for abbreviations). The scale bar at the bottom represents 1 % estimated sequence divergence.

Fig. S5: Graphic circular genome map of *'Ca.* Methylopumilus planktonicus' strain MMS-2-53. From outside to the center: Genes on forward strand, genes on reverse strand (both coloured in COG categories), BLASTx comparison to 3 closely related taxa (*'Ca.* Methylopumilus turicensis' MMS-10A-171, HTCC2181 of the marine OM43 lineage, and *Methylotenera mobilis* JLW8), GC content, GC skew.

COG classification was done with the WebMGA server (Wu et al., 2011) and the genome was displayed with the CGView server (Grant et al. 2008).

References:

Wu S, Zhu Z, Fu L, Niu B, Li W (2011). WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.

Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181-W184.

GC skew -

F

Н

W

tRNA

rRNA

D

0

Fig. S6: Graphic circular genome map of *'Ca.* Methylopumilus turicensis' strain MMS-10A-171. From outside to the center: Genes on forward strand, genes on reverse strand (both coloured in COG categories), BLASTx comparison to 3 closely related taxa (*'Ca.* Methylopumilus planktonicus' MMS-2-53, *Methylotenera mobilis* JLW8, and *Methylobacillus flagellatus* KT), GC content, GC skew. COG classification was done with the WebMGA server (Wu et al., 2011) and the genome was displayed with the CGView server (Grant et al. 2008).

References:

Wu S, Zhu Z, Fu L, Niu B, Li W (2011). WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.

Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181-W184.

