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Data Collection.Data collection spanned the child’s first 3 y of life.
Audio and video recordings were captured from a custom re-
cording system in the child’s home, consisting of 11 cameras and
14 microphones embedded in the ceilings. This system was un-
obtrusive while achieving full spatial coverage. Cameras were
fitted with fisheye lenses to obtain a full view of each room, and
recordings were made at ∼15 frames per second and 1-megapixel
resolution. Audio was recorded from boundary-layer micro-
phones, which were able to capture whispered speech from any
location by using the entire ceiling as a pickup. Audio was dig-
itized at 48 KHz and 16-bit sample resolution. Fig. S1 shows the
family’s home, a view into the living room, and some components
of the recording system. Altogether, roughly 90,000 h of video
and 120,000 h of audio were recorded and stored on servers
housed at the MIT Media Lab. Fig. S2 shows the full data-pro-
cessing system used in the current study.

Speech Transcription. The transcribed subset of the data spans the
period during which the child was aged 9–24 mo. Recordings are
included from 444 of the 488 d in this period (with exclusions
due to random subsampling in the transcription process). During
this time frame, an average of 10 h of multitrack audio was cap-
tured per day.
In general, the audio-video recording system ran all day and

captured substantial amounts of silence, nonspeech audio, and
adult speech during the child’s naps. To minimize the amount of
audio to transcribe and to focus on the speech relevant to the
child’s language learning, we identified a subset of multitrack
audio recordings for transcription using a manual preprocessing
step. By viewing the video, we first annotated the room the child
was in and whether he was awake or asleep across the day’s
recording. Annotation was performed using TotalRecall (33), a
tool we developed for browsing and annotating audio and video.
The resultant “where-is-baby” time series of annotations were
then used to exclude audio from rooms that were out of the
child’s hearing range. Furthermore, when the child was asleep,
audio from all rooms was excluded. We refer to the nonchild
speech contained in this filtered subset as child-available speech,
because it can reasonably be considered his linguistic input.
Even after filtering, fully manual transcription at this scale

would have been prohibitively time-consuming and expensive,
and fully automatic speech recognition would have been too
inaccurate. We developed a new speech transcription tool called
BlitzScribe (21) that combines automatic and manual processing.
BlitzScribe uses automatic audio-processing algorithms to scan
through the unstructured audio recordings to find speech and
create short, easily transcribable segments. The speech detection
algorithm splits audio into short 30-ms frames with a 15-ms
overlap, extracts spectral features from each frame, and applies
boosted decision trees to classify audio frames as speech or
nonspeech. A segmentation algorithm then groups classified frames
into short segments of speech and nonspeech.
Automatically identified speech segments were then loaded

into a simplified user interface that presented each segment as a
blank row in a list where the transcript could be typed. Audio
playback was controlled using the keyboard, obviating the need to
switch between the keyboard and mouse. Because the speech
segments were automatically detected, if nonspeech was in-
correctly labeled as speech (false-positive error), the transcriber
simply left the segment blank and it was automatically marked as
nonspeech. The system was tuned to favor false-positive over

false-negative errors, because false-positive errors are easier
to correct.
The primary output of BlitzScribe was a sequence of speech

transcripts linked to the corresponding audio segments. Tran-
scribed speech segments were generally between 500 ms and 5 s
long, tuned to support ease of transcription as well as fine-grained
temporal resolution for each transcribed token. In addition to the
speech transcripts, the labeled speech and nonspeech segment
information could be used to retrain and improve the speech
detection algorithms.
Transcription quality was assessed on an ongoing basis by

assigning the same 15-min blocks of audio to multiple annotators
and evaluating interannotator agreement on these assignments.
Our system incorporated the US National Institute of Standards
and Technology sclite text alignment algorithm (34) to calculate
interannotator agreement. This measure was primarily used to
track transcriber performance and identify cases where tran-
scription conventions may have been misunderstood, which was
particularly important as nearly 70 annotators contributed to
this project over the course of 5 y. We reviewed cases where a
transcriber’s average pairwise interannotator agreement score
against all other annotators dropped below ∼0.85. In some cases,
low reliability would lead to greater training for individual
transcribers or the establishment of transcription conventions for
particular words or phrases. Some assignments were inherently
more difficult, however, and had lower average interannotator
agreement scores due to background noise or overlapping speech,
for example.

Speaker Identification. Speaker identity was labeled using a fully
automatic system, although manual annotations were included
where available. The automatic system used acoustic features to
learn a decision boundary between the four primary speakers:
mother, father, nanny, and child. We used mel-frequency cepstral
coefficient (MFCC) features, MFCC deltas, and MFCC delta-
deltas, which are effective and commonly used in automatic speech-
processing algorithms (35). Audio samples in a speech segment
were partitioned into a set of 30-ms frames (with 15-ms overlap),
and acoustic features were extracted from each frame in the same
manner as for speech detection. The frames were classified by
comparing the likelihood of these observations under a trained
Gaussian mixture model for each speaker. Our system uses a
universal background model trained across different speakers as a
starting point for speaker-specific mixture models, similar to
other approaches (36).
For any speech segment, there are potentially multiple speaker

annotations produced either by different versions of the auto-
matic speaker identification system or by different human an-
notators. The logic for choosing the speaker annotation is always
to prefer human annotations to machine annotations, and then to
select the most recently produced annotation. Roughly 2.2%
(about 51,000) of the speech segments were human-annotated,
and the remaining segments were produced automatically. Al-
though manual speaker labeling is expensive in terms of human
effort, a small number of segments (∼ 540) were annotated in-
dependently by multiple annotators to assess interannotator agree-
ment. Interannotator agreement on speaker labeling was high, at
roughly 96% agreement and κ= 0.94.
Each automatically generated speaker annotation also provides

a confidence score. We used a confidence threshold to tune the
tradeoff between data yield and accuracy. In the results reported
here, we used a confidence threshold that preserved at least 80%
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of the data for each speaker and achieved accuracy in excess
of 90%. Details on the relationship between the confidence
threshold, accuracy, and yield are provided in Fig. S3. Note that,
as described below, AoFP by the child for each word was man-
ually verified to avoid faulty speaker identification leading to
errors in this measure.

Child’s Productive Vocabulary
The primary outcome variable for our study was the child’s AoFP
for individual words. Finding these first productions in roughly 8
million tokens of child and adult speech is challenging because
the subset of child speech alone consists of hundreds of hours of
audio, which is too much to listen to manually. On the other
hand, the naive strategy of simply searching the transcripts for
the child’s first production of a word is also problematic; small
annotation error rates for transcripts and speaker identification
labels can result in many false-positive errors, which could er-
roneously lead to attributing adult-produced words to the child.
To narrow down candidate words, we followed a two-step pro-
cess, first filtering annotation errors and then conducting manual
review of the filtered set of words.
There are two primary annotation error types that might lead to

incorrect identification of a word’s first production by the child:
errors in transcription and errors in speaker identification.
Transcription errors are less common, and because speech
transcripts are human-generated, further human review of a
speech segment may not yield a better or more authoritative
transcript. In contrast, most speaker identification annotations
are produced by an automatic system with a higher error rate,
and speaker identity is relatively easy to discern for a human
annotator. We addressed these issues through a combination
of automatic and manual approaches. An automatic inference
procedure identified candidate words and word birth dates for
the child’s vocabulary from the large amount of observed data,
and a software tool was developed to enable rapid manual review
and annotation.

Automatically Identifying Candidate Word Births. The automatic
inference procedure was the first step. We began by modeling the
speaker label associated with a particular token in an utterance as
a noisy observation. There are two primary error types that could
result from the speaker identification system with respect to
identifying the child’s true vocabulary. A false-negative result is a
case in which a child’s true production of a word is mislabeled as
nonchild speech. Although a single true production of a partic-
ular word may be mislabeled as nonchild speech, the chance that
all such true productions are mislabeled quickly decreases to-
ward zero with each production. For this reason, and because
scouring all nonchild-labeled speech for false-negative results
would be extremely costly, we do not directly address false-
negative errors. However, we do address false-positive errors, in
which a nonchild word production is mislabeled as child speech.
False-positive errors can lead to attributing words to the child’s
productive vocabulary erroneously or to identifying AoFP earlier
than the child’s first production.
To infer automatically whether and when the child first pro-

duced a word in the presence of false-positive errors, we use an
hypothesis testing procedure to compare a model of observed
word occurrence counts parameterized by word birth month to
a null hypothesis model. Under the null hypothesis, the child
never produced the word and all observed occurrences are false-
positive errors. In the parameterized model, all observed child
productions in the preacquisition regime are false-positive errors,
whereas those observed child productions in the postacquisition
regime are a combination of false-positive errors and true-positive
counts. A likelihood ratio test can be used both to test whether the
child acquired the word and to determine what the most likely
word birth month would be. Fig. S4 shows the occurrence counts

of the word “star” by month. Although there are child-labeled
occurrences of this word for every month (shown in red), the
likelihood ratio test procedure identifies month 16 as the mostly
likely word birth month and, furthermore, that the likelihood of
the observed data under this model is significantly higher than
under the null model (P< 0.05).
With this method, we proceeded as follows. First, only child

utterances with a speaker identification confidence at or greater
than 0.4 were considered. This threshold preserved 90% of the
child’s true utterances at a false-positive rate of about 0.05. All
words in these utterances were then tokenized and normalized
via manually generated mapping, reducing alternate spellings,
plurals, gerunds, and some common misspellings to a canonical
form, resulting in 6,064 word types. Next, words that were ut-
tered two or fewer times by the child and five or fewer times
overall were removed. Without a sufficient number of examples
of the child using a word, even manual review may be unreliable.
A similar criterion for child speech was used by Dromi (37),
which required three consistent vocalizations in various contexts
for a word to be admitted into the lexicon. We also noted that
the long tail of rare words often contained misspellings of more
common words. These thresholds were chosen to be permissive
and yielded a set of 2,197 candidate words, which is many more
than expected for a 2-y-old (15). Reducing the thresholds further
would have required additional human review later in the anal-
ysis pipeline but with little expected change to the final set of
word births. After filtering, we applied the hypothesis testing
procedure described above to each of these words, yielding a
candidate set of 1,375 word births.

Manual Word Birth Review and Annotation. The final vocabulary
growth time line used for our analyses was manually reviewed and
verified using the “Word Birth Browser,” a tool we designed
specifically for this purpose. This tool loads a set of candidate
words and their AoFP values, and allows the user to play back
the corresponding audio segment. The user is also presented
with all other utterances containing the target word, which can
be sorted by date and speaker identity so that prior or sub-
sequent candidate occurrences may also be reviewed. Finally,
because interpreting the speech in an isolated utterance can be
challenging, a contextual window with all utterances in the sur-
rounding few minutes is also available and can be used for
playback. This tool is shown in Fig. S5. Several members of our
transcription team helped to annotate word births using this tool.
After several weeks of effort, 679 words and their AoFP dates
were identified and used in the results reported in the main text.
We believe this final set of words is quite accurate, although our

results may still be biased in a number of ways. First, we had no
method for finding false-negative errors, so we likely understate
the child’s vocabulary, especially for words learned later (for
which there are fewer opportunities for detection). Second, low-
frequency words may be more likely to be detected later than
their actual first production, because individual instances of
production might be missed.

Tracking Lexical and Syntactic Development. The child’s productive
vocabulary grew slowly at first, consisting of about 10–15 words
by 12 mo of age, and then rapidly accelerated over the next 6 mo.
Although the child’s vocabulary continued to grow, the rate of
growth decreased substantially after 18 mo of age. Fig. S6A
depicts the number of new words added to the child’s productive
vocabulary over time, illustrating the dynamic nature of the child’s
lexical growth.
Researchers have noted the rapid growth of many children’s

early vocabularies, which is sometimes referred to as a “vocab-
ulary spurt.” Some have suggested this vocabulary spurt is a
byproduct of a new insight children gain about categories (38),
and others suggest that it is a mathematical consequence of the
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natural distribution of word difficulty (39). Furthermore, some
children’s lexical growth rate may not accelerate but exhibit
greater development in other areas, such as combinatorial pro-
ductivity (2). Less commonly discussed is the decline we observe in
growth rate; it has been suggested this decline may signify a transition
into a different learning “stage” (37) or a statistical sampling artifact
(1), although the scale and density of the Human Speechome
Project corpus mitigates sampling issues. Fig. S6B shows the
MLU (in words) of the child over time, an indicator of the child’s
grammatical and general productive language development. The
transition from single-word utterances to multiword productions
seems to begin around 18 mo of age. Notably, the decline in
lexical acquisition rate also occurs around this time. This pattern
of decreased productive lexical acquisition rate, coinciding with
an increase in combinatorial speech, aligns with the findings by
Dromi (37), who argued for distinct learning stages. Certainly,
grammatical combinatorial speech requires a sufficiently (and
syntactically) rich productive vocabulary, supporting a de-
pendence of MLU on vocabulary size. However, it is less clear
why the onset of combinatorial speech should coincide with a
decrease in the lexical acquisition rate. Although more research
is needed, Fig. S6 illustrates that there are multiple strands of
communicative development underway that may share important
interdependencies.
Fig. S7 shows the overall breakdown of utterances and tokens

by speaker, after removing utterances consisting only of nonword
vocalizations. The child’s role as a communicative participant
clearly increases with time. The pattern of engagement roughly
tracks vocabulary size and shows a substantial increase around
months 17 and 18, roughly tracking the rapid increase in vo-
cabulary size in these months.

Methods for Distinctiveness Measures
Video Processing. Spatial distinctiveness was calculated across
spatial regions rather than at the pixel level, which yielded a lower
dimensional spatial representation that also provided robustness
to pixel noise. To obtain regions that faithfully captured the spa-
tial and activity structures of interest, the raw 960 × 960-pixel
video from each camera was first down-sampled to 120 × 120
pixels. Background subtraction was applied to each down-
sampled frame to identify “active” pixels that differed significantly
from their average “background” value, resulting in streams of
binary video. For each stream, pairs of pixels with highly corre-
lated values and within a short spatial distance of each other
were clustered together, yielding a total of 487 regions across
nine of the 11 cameras (the master bedroom and bathroom were
again omitted from this analysis).
Region activities for a point in time were computed as follows.

First, background subtraction was applied to all reduced-reso-
lution video frames within a temporal window of ±5 s of the
target time. For each region, we calculated the fraction of active
pixels in the region for all frames in the temporal window and
then thresholded. In this way, the activity at any point in time
was summarized as a 487-dimensional binary vector indicating
the active regions.

LDA Modeling. We partitioned the entire corpus of speech tran-
scripts into a set of documents by splitting the 9- to 24-mo time
range into a nonoverlapping sequence of 10-min windows, and
grouped all transcripts that occurred in a 10-min window together
into a document. This process resulted in ∼ 18,700 documents,
which we referred to as “episodes.” We selected 10-min windows
through some experimentation, but with an aim toward choosing
a time scale that would capture enough natural speech to include
one or a small number of identifiable, discrete activities. Shorter
(5 min) and longer (15 min) episodes also yielded similar topics
and regression results. Note that in the extreme, very short docu-
ments consisting of a single word provide no other words of

linguistic context. On the other hand, very long documents (e.g.,
at the day level) would not capture how clusters of co-occurring
words and activities shift and change over the course of a day.
In the standard LDA formulation, documents are treated as an

unordered set of words. Each document was first processed to
identify a common vocabulary shared across all documents. As is
common in probabilistic text modeling, where parameters must be
estimated for every word, we reduced the vocabulary size by first
removing a small set of “stop words” that were expected to
contribute little topic information (e.g., and, “or,” “not”). We
then applied a stemming algorithm to combine morphological
variants into a single word type (e.g., mapping “runs,” “running,”
and “run” to a common form). Finally, we removed words that
occurred fewer than six times or occurred in fewer than five
documents. The resultant vocabulary consisted of 6,731 words.
Note that although these thresholds better condition the input
data for LDA modeling (because removing rare words reduces
the number of parameters to estimate), the downstream dis-
tinctiveness analysis is not particularly sensitive to these thresh-
olds. In general, a rare word is less likely to have an impact on a
document’s topic distribution, and the distinctiveness measure
derives from the topic distributions of pre-AoFP documents con-
taining the target word.
We applied LDA to this corpus. LDA takes as input a target

number of topics to identify; choosing the appropriate number
requires some intuition and experimentation. We settled on 25
topics after a number of early experiments, largely because the
resulting topics were fairly coherent and interpretable (but note
that distinctiveness results were also fairly robust to different
numbers of topics). Some of the topics that emerged seemed to
correspond to activities such as mealtime, book reading, bath
time, and playing with toys. In addition, 25 topics corresponded
approximately to the number of everyday activities that human
annotators noted in a separate annotation effort of a subset of the
corpus [more details on this manual activity annotation and
analysis are provided elsewhere (40)].
As with spatial and temporal context, we computed a topic

distribution for each word based on caregiver word use before
AoFP. To do so, we identified all 10-min episodes (documents)
before AoFP. We apportioned caregiver uses of the target word
during the episode to topics according to the episode’s topic
mixture and then summed and normalized to obtain the topic
distribution for the word.
A topic that is strongly associated with a word will thus have a

high conditional probability PrðtopicijwÞ, but as with spatial and
temporal context, the topic conditional probability distribution
must be compared with a background distribution to quantify its
distinctiveness. The background topic distribution was computed
in the same manner as the per-word topic distribution, except by
summing over all episodes in the corpus. It is the weighted av-
erage of all of the episode topic distributions, weighted by the
number of words in each episode. Linguistic topic distinctiveness
is defined as the frequency-adjusted KL-divergence between the
word conditional topic distribution and the background topic
distribution.

Bias Correction for KL-Divergence Estimates. The distinctiveness
measures compare a word’s spatial, temporal, or topical distri-
bution against the “background” distribution of language use in
the modality. These distributions are modeled as multinomials
and estimated from observed data. Although the multinomial
parameter estimates are unbiased, the KL-divergence values for
these estimated distributions are not; instead, they depend on
the number of samples used in estimating the underlying distri-
butions. With fewer samples, the KL-divergence estimates are
biased upward, decreasing toward the true KL-divergence as the
number of samples increases.
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This bias is problematic when comparing KL-divergence values
between words whose distributions are derived from different
numbers of observations. Because the number of observations for
a word depends on both its frequency and AoFP, the raw KL-
divergence measure will reflect both true distributional differ-
ences in use patterns and frequency-derived bias. Therefore, we
explored several bias correction strategies to characterize word
distinctiveness properly.
Miller (30) investigated the bias in estimates of entropy, a

closely related quantity. He showed that the highest order bias
terms depend on k, the number of bins in the multinomial, and n,
the number of samples used in estimating the multinomial. The
bias decreases toward zero following a 1

n relationship. It is
straightforward to show that the KL-divergence bias follows the
same 1

n falloff toward zero. [This bias can be seen by expressing
KL-divergence as the cross-entropy minus the entropy, or
Dðp k qÞ=Hðp, qÞ−HðpÞ, and recognizing that the cross-entropy
estimator is unbiased for multinomial distributions.] Miller (30)
suggests a bias correction that can be applied when n is not too
small (i.e., when n � k); unfortunately, this condition is not valid
for many words, particularly for spatial distinctiveness, where the
number of multinomial bins (i.e., regions) is large.
Chao and Shen (41) present another approach to entropy bias

correction for characterizing species diversity from sample
counts. Here, the number of species corresponds to the number of
multinomial bins, which is unknown. In our scenario, the number
of bins is known, although in the case of spatial distinctiveness,
some regions may never be active for the set of learned words. A
thorough discussion of the bias in information theoretic esti-
mators is presented by Paninski (42).
With these issues in mind, we empirically examined several

approaches to quantifying word distinctiveness. The raw KL-
divergence value is strongly correlatedwith the sample counts used in
constructing the word multinomial distribution, as expected, and
generally follows a power law with logDðpw k pbgÞ∼ − α log nw,
where pw is the estimated word distribution, nw is the number of
word samples used, and pbg is the background distribution. Applying
the corrections of Miller (30) and Chao-Shen (41) also generally
yielded values negatively correlated with count. This correlation
may reflect a real property of word use that more distinctive words
are less frequent, but in combined regression models, collinearity
with other variables is a concern as a potential confound.
Therefore, we took a conservative approach and decided to

remove the effect of count completely in defining distinctiveness:
We used the residual log KL-divergence value after regressing on
log count. Although this residualization step may diminish the
predictive power of KL-divergence, particularly if log sample
count correlates with AoFP (although it generally does not), it
effectively reduces collinearity with other predictors. Intuitively,
the regression line captures the average log KL-divergence by log
count, and the residual for a particular word reflects how much
more or less contextually distinctive the word is relative to others
with the same sample count.

Supporting Data and Analytical Details
In this section, we give additional details on selected analyses; full
code to reproduce all reported analyses is available in the linked
repository. For interested readers who wish to explore the
raw data linked in our GitHub repository (github.com/bcroy/
HSP_wordbirth), the measures (and variable names) are as fol-
lows: word frequency (sln.freq.pre), MLU (s.uttlen.pre), number
of phonemes (s.cmu.phon), spatial distinctiveness (srl.sp.KL),
temporal distinctiveness (srl.temp.KL), and linguistic distinctive-
ness (srl.topic.KL). The variables are named according to the
following conventions: standardized variables are prefixed by s,
normalized variables are prefixed by n, and logged variables are
prefixed by l. The distinctiveness measures are all residualized,
denoted with the prefix r.

Correlational Structure Between Variables. Correlations between
variables are shown in Fig. S8. The baseline predictors (MLU,
number of phonemes, and frequency) were relatively un-
correlated, with one exception. Number of phonemes is a mea-
sure of word length, which has been known since Zipf (43) to
be correlated with word frequency [perhaps as a consequence
of the evolution of vocabulary to facilitate efficient communi-
cation (44)].
In contrast, spatial, temporal, and topical distinctiveness was

largely uncorrelated with the baseline predictors. We note that
correlations between log frequency and the distinctiveness pre-
dictors are close to zero but nonzero, despite the fact that the
distinctiveness predictors are frequency-controlled, as described
above. This effect arises because the counts on which the dis-
tinctiveness predictors are residualized are not the same as those
counts used to estimate word frequency. There is some small
variance in the counts used for each of the distinctiveness pre-
dictors relative to frequency, due to both missing video data for a
very small subset of transcripts and minor differences in data
treatment across approaches (e.g., how multiple uses of a word
within the same time window affect distinctiveness distributions).
Finally, we note that there is a high degree of correlation

between the distinctiveness predictors (shown by the red dashed
line in Fig. S8). For this reason, in the main text, we report
models using only one of the predictors, although a model that
includes all predictors is shown below.

Differences Between Distinctiveness Variables. Although the pri-
mary focus in our analyses is the commonality between the three
distinctiveness predictors, we note that they do differ for certain
words. We calculated an index of differences between the dis-
tinctiveness predictors by calculating the summed squared dif-
ference between each prediction and the mean of all three. Table
S1 shows the top 10 words on this deviation measure. The results
are clearly interpretable. Words like “diaper,” “change,” and
“poop” are very spatially distinctive but are temporally very
diffuse, probably because their associated activity is spatially
localized (the changing table) but happens at different times
throughout the day. In contrast, the word “breakfast” is tem-
porally very distinct but is said throughout the house, probably
because the child is being called to eat breakfast at a particular
time each morning. These results support the idea that these
predictors reveal aspects of the activity structure in which the
words are used.

Distinctiveness of Speaker Context. Thanks to the suggestion of the
editor and one of the reviewers, we also examined the role of
caregiver presence during word use as another measure of a
word’s contextual distinctiveness. We defined a new variable to
capture caregiver context in the same manner as the other dis-
tinctiveness measures by first computing a word’s pre-AoFP
caregiver use distribution (which served as a proxy for caregiver
presence, because only speech in the child’s vicinity was tran-
scribed.) Thus, words used more frequently in the child’s pres-
ence by a particular caregiver would have a corresponding peak
in the word’s speaker distribution. As with the other distinc-
tiveness predictors, we then defined the speaker context dis-
tinctiveness as the residualized KL-divergence of the word’s
speaker distribution relative to the baseline speaker distribution.
By itself, this variable is predictive of AoFP, but when added to

the baseline model, it is only significant in predicting the AoFP for
nouns and is still weaker than the other three distinctiveness
predictors. However, the relationship is directionally the same,
indicating that words (or at least nouns) that are more strongly
tied to particular caregivers tend to be produced earlier by the
child. We tentatively view this analysis as supportive of our hy-
pothesis that linguistic exposure in stable activities, as reflected
by distinctive spatial, temporal, linguistic, and caregiver presence
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measures, contributes to earlier productive acquisition. Table S7
summarizes the relevant distinctiveness values for the combined
speaker distinctiveness model, which can be compared with Fig. 1.

Predictor Variables.We used a number of variable transformations
in our analysis, as described below. All regression coefficients
were standardized (variables prefixed by s) by subtracting the
mean and dividing by the SD. This step was taken to create
coefficient values whosemagnitudes were interpretable as number of
days of AoFP per SD of change on a predictor; standardization does
not affect the reliability estimates of either individual coefficients
or the model as a whole.
Word frequency.We examined a number of ways of including word
frequency into our models. From our transcripts, we extracted a
count of the number of times a word occurred in the caregivers’
speech before AoFP. This count represents a biased estimate of
frequency before AoFP, however, because our transcripts omit
the first 9 mo of the child’s life; for a word learned very early, this
count would be artificially low. To remedy this issue, we nor-
malized frequency to a frequency-per-day measure by dividing by
the approximate number of days before AoFP for which we had
transcripts (variables prefixed by n, denoting normalized). Then,
because word frequencies are Zipfian in their distribution (43),
we took the natural logarithm of frequency per day (variables
prefixed by l, denoting logged). The final predictor we use was
thus the standardized, logged, normalized word frequency during
the period before AoFP (sln.freq.pre). (We note that this set of
variable transformations maximizes the correlation between
frequency and age of acquisition relative to other variants.)
MLU. Because morphological analyses were not available for our
data, MLU was calculated in words for each sentence in which a
target word occurred, again using only those utterances before
AoFP. These means were then standardized for the final analysis
(s.uttlen.pre).
Number of phonemes. We extracted the number of phonemes in
each word by identifying matches in the Carnegie Mellon Uni-
versity Pronouncing Dictionary (45). There were 13 words for
which no match was found. We then standardized length in
phonemes for the final analysis (s.cmu.phon).
Distinctiveness predictors. The three distinctiveness predictors were
also log-transformed, residualized (as noted above), and stan-
dardized.
Word category. We first categorized words using the standard
MacArthur–Bates Communicative Development Inventory (CDI)
categories (small.cat) (15). We then further merged these categories
to create syntactic categories, using the category merging scheme of
Bates (46) (also ref. 47). Note that this conservative scheme ex-
cludes all words marked as “Games and Social Routines” from the
nominals category because they may not be true nominals but, in-
stead, words that are used in particular restricted routines.

Regression Models. We note that although we used ordinary least
squares regression, all results are qualitatively unchanged via the
use of robust regression (48). Results from these analyses are available
through our interactive visualization application (wordbirths.
stanford.edu/).
In the tables below, we give the full details of the four primary

regression models pictured in Fig. 1. Models for subsets of the
data can be recomputed easily using the code available in the
linked repository. Tables S2–S5 give the baseline model, fol-
lowed by the three individual distinctiveness predictor models.
Table S6 shows a model including all three distinctiveness

predictors. In this model, spatial distinctiveness is assigned the
largest predictive weight, whereas temporal distinctiveness re-
mains reliable as well (although considerably smaller than when
it is entered separately). Linguistic distinctiveness is not signifi-
cant in this model, however, suggesting that it did not explain
unique variance in AoFP over and above the other distinctive-
ness predictors. This relatively smaller effect of linguistic dis-
tinctiveness is consistent with both its smaller coefficient value in
the regression when including it alone (Table S5) and its sub-
stantially reduced predictive power when controlling for image-
ability (discussed below).

Control Analyses for Other Psycholinguistic Variables. To test whether
our distinctiveness predictors corresponded to other psycholin-
guistic variables, wemerged theMedical Research Council (MRC)
psycholinguistic norms for familiarity, imageability, and concreteness
with the child’s vocabulary (31). There were 430 words in common
between these two sets. Imageability and concreteness were almost
indistinguishable (r= 0.93), and neither was particularly correlated
with any distinctiveness predictor (rmax = 0.35, rmin = 0.22), although
these correlations were all very reliable, given the large number of
words over which they were computed. Familiarity was almost
uncorrelated with the distinctiveness predictors (rspatial =−0.05,
rtemporal =−0.10, rlinguistic =−0.08), although it was highly correlated
with our frequency measure (r= 0.55).
We next examined whether regression coefficients were altered

by controlling for variables in the MRC database (within the
subset of words for which these variables were available). In-
triguingly, the magnitude of spatial distinctiveness for this subset
decreased relatively little when controlling for imageability
(−25.71 d/SD to −20.77 d/SD), whereas the magnitude of tem-
poral distinctiveness decreased somewhat more (−17.65 d/SD to
−12.25 d/SD), and the magnitude of linguistic distinctiveness
decreased the most (−13.21 d/SD to −6.47 d/SD). Importantly,
in all three models, the distinctiveness predictor was still reliable
even when controlling for imageability. The same pattern of
results was observed for concreteness.

Roy et al. www.pnas.org/cgi/content/short/1419773112 5 of 12

http://wordbirths.stanford.edu/
http://wordbirths.stanford.edu/
www.pnas.org/cgi/content/short/1419773112


Fig. S1. Site of the Human Speechome Project, where all recording took place. Also shown is the ceiling-mounted camera with an open privacy shutter, the
microphone, the recording controller, and a view into the living room.

Roy et al. www.pnas.org/cgi/content/short/1419773112 6 of 12

www.pnas.org/cgi/content/short/1419773112


Motion region clustering

Automatic 
microphone 
selection, 

speaker ID, 
speech 

detection

LDA algorithm

Estimates 
of child 
production

production

Linguistic 
distinctiveness

Utterances 
for each word

# phonemes

Temporal 
distinctiveness

temporal 
distribution

Transcripts
via BlitzScribe

Child's 
Vocabulary

Outcome

Predictor

Manual review

A

B Video 
recordings 

Spatial 
distinctiveness

Word 
frequency

Mean length 
of utterance

Audio 
recordings

linguistic topic 
distribution

spatial motion 
distribution

Fig. S2. Schematic of data collection and processing for our dataset, leading to our outcome (blue) and predictor (red) variables. (A) Audio recordings are
filtered automatically for speech and speaker identity and then transcribed. Transcripts are used for the identification of the child’s productions, extraction of
frequency, MLU, and temporal distinctiveness predictors, as well as for clustering via topic models (LDA) to extract the linguistic distinctiveness measure.
(B) Video recordings are processed via motion-based clustering. Region-of-motion distributions for each word are then compared with a base motion dis-
tribution for all linguistic events, yielding the spatial distinctiveness predictor.
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Fig. S4. Counts for the word “star” by month. Child-labeled counts are shown in red, whereas total counts across all speakers are shown in gray.

Fig. S5. Screen shot of the Word Birth Browser tool showing the main window (Left) and context window (Right). In the main window, the left pane is used to
select a word to review and the right pane presents all utterances containing the target word, which can be sorted by different attributes. The context window
presents the utterances that surround the selected utterance within a temporal window of 1–2 min.
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Fig. S6. Child’s word birth count (A) and MLU (B) by month (95% confidence interval shaded). The child’s total vocabulary is increasing across the full 9- to
24-mo age range, but the growth rate exhibits an increase up to 18 mo of age, followed by a decline. However, MLU remains relatively flat (at ∼ 1) until 18 mo.
Num, number.
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Fig. S7. Overall breakdown of spoken language over time for each speaker. The proportion of word tokens produced (Top) and the proportion of transcripts
produced (Bottom) are shown.
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Fig. S8. Pearson (A) and Spearman (B) correlation (corr.) coefficients between all pairs of predictors. Frequency and number of phonemes are most strongly
correlated, an indication that longer words tend to be used less frequently [first noted by Zipf (43)]. The red box shows correlations for distinctiveness pre-
dictors. freq, frequency; utt, utterance. ***P ≤ 0.001; **P ≤ 0.01; *P ≤ 0.05.

Table S1. Top 10 words on which the three distinctiveness
predictors differ in their predictions

Rank Word Deviation Spatial Linguistic Temporal

1 Diaper 14.63 4.03 0.94 −1.36
2 Chase 8.07 −1.00 2.01 −1.80
3 Change 7.10 2.96 0.16 −0.62
4 Light 7.08 3.49 0.28 0.19
5 Breakfast 6.41 −1.06 −1.30 1.92
6 Living 4.90 −1.00 1.74 −0.94
7 Door 4.85 2.08 −0.59 −0.63
8 Poop 4.84 2.46 0.17 −0.51
9 Medicine 4.64 −0.63 −0.91 1.86
10 Downstairs 4.63 1.89 −0.84 −0.65

Table S2. Baseline regression model

Variable Estimate SE t value Prð>jtjÞ
(Intercept) 555.150 2.353 235.927 <0.001
s.cmu.phon 15.710 2.629 5.977 <0.001
sln.freq.pre −6.657 2.647 −2.515 0.012
s.uttlen.pre 16.341 2.430 6.725 <0.001

Pr, probability.

Table S3. Regression model, including spatial distinctiveness
predictor

Variable Estimate SE t value Prð>jtjÞ
(Intercept) 554.131 2.210 250.757 <0.001
s.cmu.phon 14.936 2.504 5.964 <0.001
sln.freq.pre −3.079 2.691 −1.144 0.253
s.uttlen.pre 16.313 2.670 6.111 <0.001
srl.sp.KL −22.053 2.258 −9.767 <0.001
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Table S4. Regression model, including temporal distinctiveness
predictor

Variable Estimate SE t value Prð>jtjÞ
(Intercept) 555.015 2.239 247.842 <0.001
s.cmu.phon 14.942 2.503 5.969 <0.001
sln.freq.pre −5.874 2.531 −2.321 0.021
s.uttlen.pre 11.802 2.406 4.905 <0.001
srl.temp.KL −19.330 2.297 −8.414 <0.001

Table S5. Regression model, including linguistic distinctiveness
predictor

Variable Estimate SE t value Prð>jtjÞ
(Intercept) 553.592 2.313 239.343 <0.001
s.cmu.phon 15.009 2.608 5.754 <0.001
sln.freq.pre −5.405 2.788 −1.939 0.053
s.uttlen.pre 18.483 2.629 7.031 <0.001
srl.topic.KL −14.267 2.350 −6.072 <0.001

Table S6. Regression model, including all distinctiveness
predictors

Variable Estimate SE t value Prð>jtjÞ
(Intercept) 553.134 2.218 249.394 <0.001
s.cmu.phon 14.281 2.517 5.673 <0.001
sln.freq.pre −4.519 2.772 −1.630 0.104
s.uttlen.pre 14.814 2.731 5.424 <0.001
srl.topic.KL −1.252 2.746 −0.456 0.649
srl.temp.KL −9.033 2.833 −3.189 0.002
srl.sp.KL −15.997 2.883 −5.549 <0.001

Table S7. Baseline (number of phonemes, MLU, and frequency) + speaker distinctiveness
models for each word class

Word class Speaker distinctiveness SE t value Prð>jtjÞ
All (N=678) −4.573 2.396 −1.909 0.057
Nouns (N=379) −7.818 2.930 −2.668 0.008
Predicates (N=201) 5.884 3.896 1.510 0.133
Closed class (N=64) 2.542 8.383 0.303 0.763
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