Supplementary Information

Figure S1. Δ Np63 α inhibits cell invasion. (**a**) Stable Hs-578T, H1299 and A549 cells were subjected to transwell assays for cell invasion. Twenty-four hours after plating, invading cells were fixed and stained with crystal violet and photographed under a light microscope. Representative pictures from three independent experiments are shown. Scale bars = 200 µm.

Figure S2. Δ Np63 α affects gene expression in Hs-578T cells. Hs-578T cells stably expressing either vector control (C), wild type (WT) or mutant (C306R or C526W) Δ Np63 α were subjected to gene expression profiling using Affymetrix human genome U133A 2.0 arrays. (a) Gene expression profile from Hs-578T stable cells was depicted as a heatmap. Heatmap shows genes significantly altered (P < 0.05) by Δ Np63 α expression in two independent experiments. Blue: down-regulation; white: no change; orange: up-regulation. (b) CD82 expression in Hs-578T stable cells as assessed by gene array.

Figure S3. CD82 is essential for Δ Np63 α -mediated inhibition of cell invasion. (**a**) Hs-578T cells were infected with retrovirus expressing CD82 or an empty vector control (C) and selected by puromycin resistance. Stable Hs-578T cells were subjected to transwell assays for cell invasion, as previously described. Representative images from three independent experiments are shown. Scale bars = 100 µm. (**b** – **d**) Hs-578T, H1299 and A549 cells were infected with recombinant retrovirus encoding wild type murine Δ Np63a or a vector control, and subsequently infected with either one of three independent lentivirus expressing shRNA against CD82 (shCD82-1, shCD82-2 and shCD28-3), or a control shRNA (shC). Stable cells were subjected to transwell assays for cell invasion, as previously described. Representative pictures from three independent experiments are shown. Scale bars = 200 µm. ($\mathbf{e} - \mathbf{g}$) Hs-578T cells expressing shRNA against CD82 (shCD82-4 and shCD28-5), or a control shRNA (shC). (\mathbf{e}) Whole-cell lysates were subjected to western blotting, as indicated. ($\mathbf{f} - \mathbf{g}$) Stable cells were subjected to cell invasion assays as described above. (\mathbf{f}) Invading cells were photographed. Scale bars = 100 µm. (\mathbf{g}) Cell invasion results are presented as means and SE from three independent experiments.

Figure S4. CD82 mediates Δ Np63 α -induced inhibition of cell invasion. Hs-578T and H1299 cells were infected with recombinant retrovirus encoding wild type murine Δ Np63 α or a vector control. Stable cells were then infected with lentivirus expressing shRNA against CD82 (shCD82-1) or a control shRNA (shC). Cells expressing Δ Np63 α and shCD82-1 were subsequently infected with lentivirus expressing CD82 in order to revert the rescue of cell invasion by CD82 ablation. (a) Whole-cell lysates were subjected to western blotting, as indicated. (d) Stable cells were subjected to transwell assays for cell invasion, as described previously. Invading cells were photographed (left panels) and quantitated (right panels). Results presented as representative images

(left) or means and SE (right) from three independent experiments. Scale bars = 200 μ m.

Figure S5. p63 ablation-induced cell invasion is partly mediated by CD82. (a) FaDu and MCF-10A cells were infected with lentivirus expressing shRNA against p63 (shp63) or a control shRNA (shC). (a) Cells were subjected to transwell cell invasion assays, as described previously. Representative images from three independent experiments are shown. (b) FaDu and MCF-10A cells expressing shp63 or shC were infected with retrovirus expressing CD82 or a vector control (Vec). Cells were subjected to transwell cell invasion assays, as described previously. Representative images from three independent experiments are shown. (c) GSK3β ablation induces cell invasion via down-regulation of CD82. FaDu cells were infected with lentivirus expressing shRNA against GSK3β (sh3β) or a control (shC), and subsequently infected with recombinant retrovirus expressing either CD82 or a vector control (C). Puromycin-resistant cells were subjected cell invasion assays, as described previously. Images representative of three independent experiments. Scale bars = 200 µm.

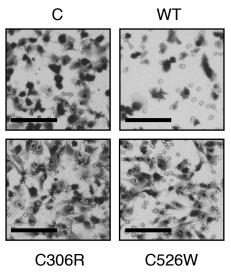

Table S1. List of known target genes regulated by $\Delta Np63\alpha$ (fold change >2) detected by Affymetrix array. Experimental evidence from the literature include identification in global expression profile analyzes after altering p63 cellular levels, validation of gene expression changes at the transcriptional level, identification of candidate response elements with subsequent testing in transcriptional reporter assays, and/or chromatin immunoprecipitation studies to verify occupancy of p63 at genomic loci.

Table S2. Ontological classification of Δ Np63 α -regulated genes. Hs-578T cells stably expressing Δ Np63 α or a vector control were profiled by Affymetrix array (n = 2). Genes whose expression was two fold or more than that of the vector (P < 0.05) were classified ontologically using DAVID Bioinformatics Resources 6.7.

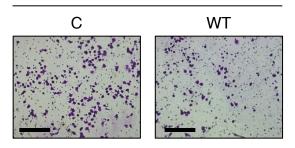
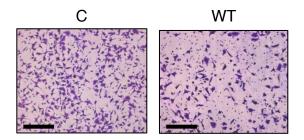
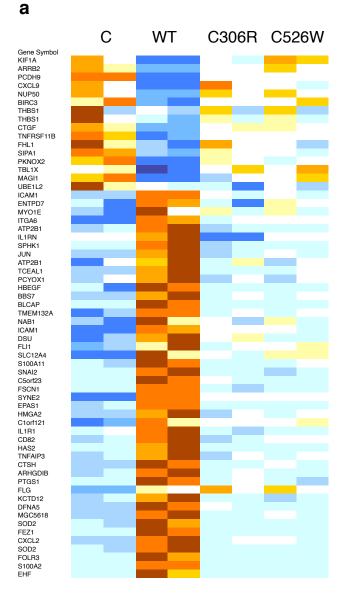
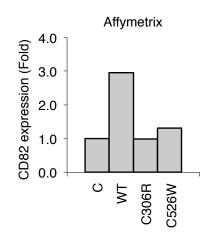
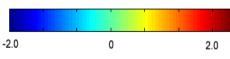

Table S3. List of genes up-regulated by wild type Δ Np63 α classified by ontology. Hs-578T cells stably expressing Δ Np63 α or a vector control were profiled by Affymetrix array (n = 2). Genes whose expression was two fold or more than that of the vector (P < 0.05) were classified ontologically using DAVID Bioinformatics Resources 6.7.

Table S4. Oligonuleotides used for mutageneis, ChIP, PCR, Q-PCR, siRNA and shRNA.

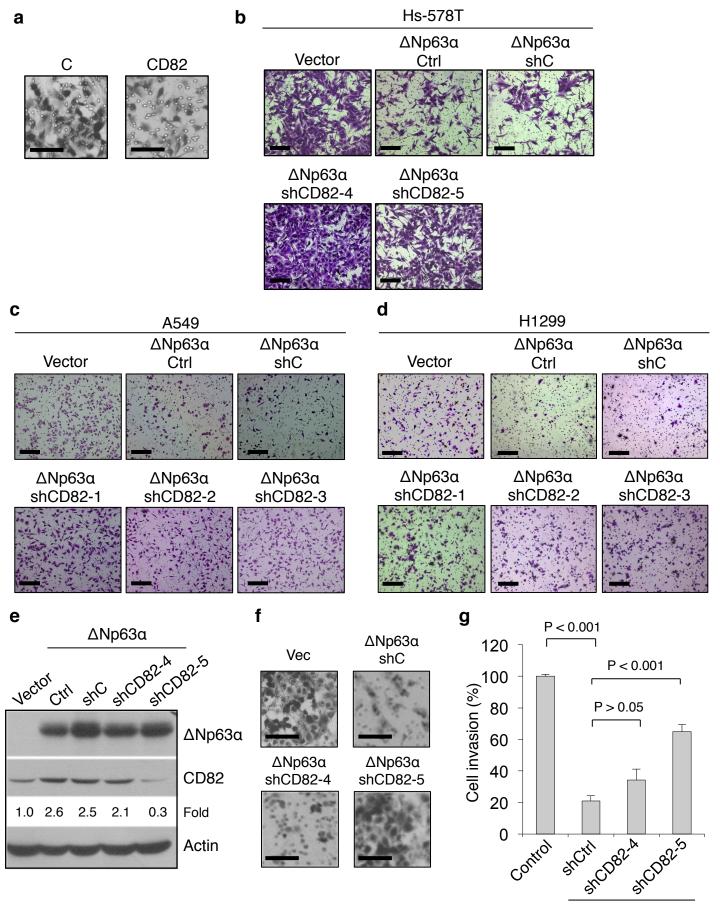

Hs-578T

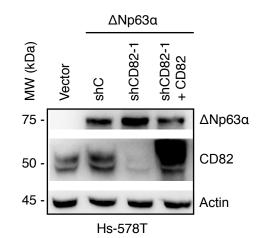


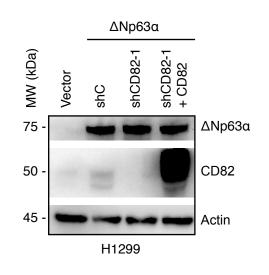




а

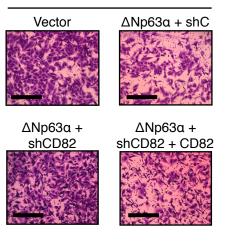


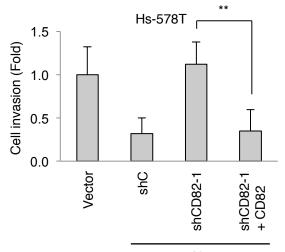




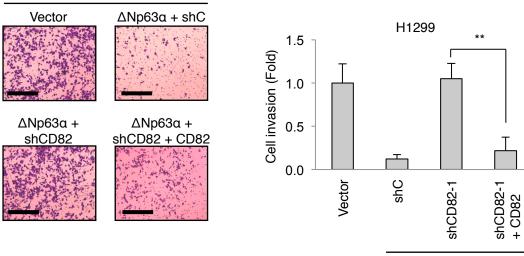
Supplemental Figure S2, Wu et al.

 $\Delta Np63\alpha$ Supplemental Figure S3, Wu et al.

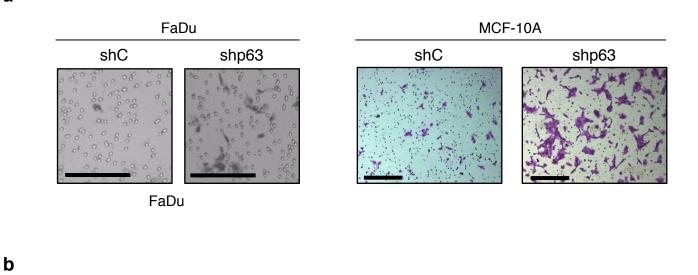


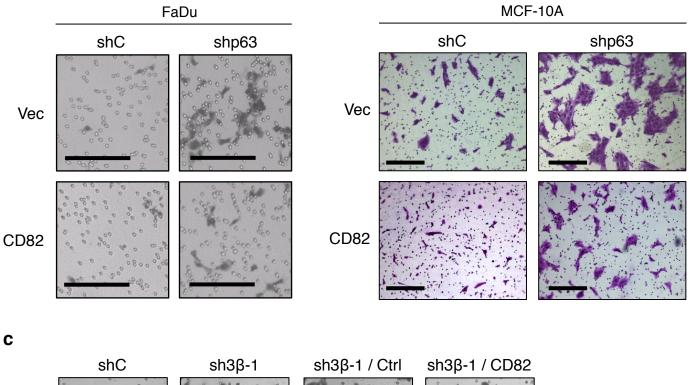


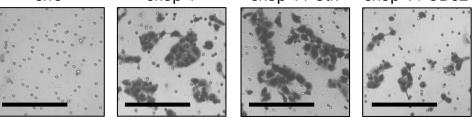
b



H1299


ΔΝρ63α




ΔΝρ63α

Supplemental Figure S4, Wu et al.

Supplemental Figure S5, Wu et al.

Table S1. L		own target genes regulat	· · ·	· · · · · · · · · · · · · · · · · · ·	,	
Gene symbol	fold	reference	Gene symbol	fold	reference	
ACP5	3.1	(Truong et al., 2006)	IL32	2.5	(Carroll et al., 2006)	
AKR1B10	-5.6	(Truong et al., 2006)	ITGA6	2.0	(Carroll et al., 2006; Truon et al., 2006)	
ANXA8	13.6	(Osada et al., 2005)	JUN	2.1	(Testoni et al., 2006)	
ARHGDIB	4.0	(Carroll et al., 2006)	KCTD12	4.4	(Truong et al., 2006)	
BHLHB3	2.3	(Adorno et al., 2009)	KRT14	31.6	(Boldrup et al., 2007; Cand et al., 2006; Romano et al., 2007)	
CSTA	3.6	(Barbieri et al., 2006)	KYNU	2.4	(Truong et al., 2006)	
CTGF	-2.5	(Carroll et al., 2006)	LAMC2	3.5	(Carroll et al., 2006)	
DUSP1	3.0	(Truong et al., 2006)	LAMB3	2.0	(Carroll et al., 2006)	
EGFR	2.1	Carroll et al., 2006; Nishi et al., 2001)	LPXN	2.4	(Carroll et al., 2006)	
FABP4	19.7	(Truong et al., 2006)	MAST4	2.1	(Osada et al., 2005)	
FEZ1	6.2	(Osada et al., 2005)	MT1X	2.9	(Sasaki et al., 2005; Truong et al., 2006)	
FLG	4.1	(Barbieri et al., 2006; Candi et al., 2006; Truong et al., 2006)	NR4A2	-2.0	(Pozzi et al., 2009)	
FST	2.1	(Barbieri et al., 2006)	NT5E	2.5	(Osada et al., 2005)	
GM2A	2.0	(Truong et al., 2006)	PBX1	-2.1	(Barbieri et al., 2006; Truong et al., 2006)	
HBEGF	2.4	(Wu et al., 2003)	PERP	2.4	(Ihrie et al., 2005)	
HEY1	2.4		PKNOX2		(Testoni et al., 2006)	
ICAM1	2.2	(Carroll et al., 2006; Kikuchi et al., 2004)	PLLP	3.7	(Osada et al., 2005)	
IL1A	6.7	(Barbieri et al., 2006; Truong et al., 2006)	POSTN	-3.8	(Barbieri et al., 2006)	
IL1B	4.8	(Truong et al., 2006)	PTGS1	6.7	(Truong et al., 2006)	
IL1F5	10.3	(Truong et al., 2006)	S100A2	13.9	(Kirschner et al., 2008; Lapi et al., 2006)	
IL1R1	3.7	(Truong et al., 2006)	SAA1	18.2	(Truong et al., 2006)	
IL1RN	2.1	(Truong et al., 2006)	SLC7A11	2.0	(Wu et al., 2003)	
IL32	2.5	(Carroll et al., 2006)	TNC	2.5	(Barbieri et al., 2006)	

Supplemental Table S1, Wu et al.

Table S2. Ontological classification of $\Delta Np63\alpha$ -regulated genes.					
Ontological classification	Up-regulated	Down-regulated			
Cell communication	49	28			
Development	48	18			
Cell differentiation	29	6			
Immune syst. process	22	6			
Response to stress	21	9			
Apoptosis	12	5			
Cell proliferation	13	4			
Cell cycle	8	5			
Cell adhesion	19	9			
Cell migration / motility	14	0			

Ontological Classification	Gene names				Ontological Classification	Gene names			
Cell communication	ANGPTL2 ANGPTL4 ARHGDIB BLNK C3 CAP2 CD24 CLEC4A CSF2	DUSP6 EGFR EPAS1 EPO FST FZD3 GRB14 HBEGF HEY1	INHBA ITGA6 ITPR2 KLRC1 KLRC2 LOX LPXN MCTP2 MT1X	PBEF1 PITPNC1 RAPGEF5 RASAL2 S100A11 SNAI2 SOD2 SPHK1 TNC	Immune syst. process Response to stress	ARHGDIB BLNK C3 CD24 CLEC4A CSF2 ANGPTL4 BLNK C3	CTSS CXCL2 CXCL3 EPO FCGR2C IL1A DUSP1 EGFR EPAS1	IL1B IL1F5 IL1R1 IL1RN IL32 IL6R IL1A IL1B IL1F5	INHBA ITGA6 PODXL SAA1 SAA1 SERPINA1 SOD2
	CXCL2 CXCL3 DIRAS3	IL1A IL1B IL1R1	NAB1 NEDD9 NRG1	TNFAIP3		CD24 CXCL2 CXCL3	EPO FABP4 HBEGF	IL1R1 IL1RN PTGS1	
Development	DUSP1 ANGPTL2 ANGPTL4	IL6R EPAS1 EPO	P2RY6 IL6R INHBA	NRG1 PAPPA	Apoptosis	ANGPTL4 BCL2A1 CD24	CSF2 IL1A IL1B	inhba Perp Serpinb2	SOD2 SPHK1 TNFAIP3
	ARHGDIB BCL2A1 BLNK CAP2	FEZ1 FLG FLI1 FST	ITGA6 JUN KRT14 KRT17	PERP PLXDC1 PTGS1 RAPGEF5	Cell proliferation	CD24 CSF2 EGFR EHF	FSCN1 FZD3 HBEGF IL1A	IL1B IL6R PBEF1 S100A11	SPHK1
	CD24 CSF2	FZD3 HBEGF	LAMB3 LAMC2	SERPINB2 SNAI2	Cell cycle	DIRAS3 DUSP6	EGFR IL1A	IL1B INHBA	NEDD9 SPHK1
	CSTA DFNA5 EGFR EHF	HEY1 HMGA2 IL1A IL1B	LOX NAB1 NEDD9 NOV	SOD2 SPHK1 TNC TNFAIP3	Cell adhesion	ARHGDIB CD24 CD82 CLEC4A	FEZ1 FZD3 ICAM1 IL32	LAMB3 LAMC2 LPXN NEDD9	PODXL SAA1 TMEM8 TNC
Cell differentiation	ANGPTL4 BCL2A1 BLNK CD24 CSF2 CSTA DFNA5 EHF	EPAS1 EPO FEZ1 FLG FST HEY1 IL1A IL1B	INHBA JUN KRT14 NAB1 NRG1 PAPPA PERP PTGS1	SERPINB2 SOD2 SPHK1 TNC TNFAIP3	Cell migration/ motility	EGFR ARHGDIB CALD1 CD24 CD82	ITGA6 DUSP6 EGFR FEZ1 HBEGF	PERP IL1B ITGA6 PODXL S100A2	SAA1 SPHK1

Table S3. Ontological classification of genes up-regulated by wild type $\Delta Np63\alpha$ in Hs-578T cells.

Table S4. Oligonuleotides used for mutagenesis, ChIP, PCR, Q-PCR, siRNA, and shRNA.

shRNA.			
Oligonucleotide	Sequence	Applicaiton	
Human p63 shRNA	CCGTTTCGTCAGAACACACAT	shRNA	
CD82 shRNA-1	GTTTCATCTCTGTCCTGCAAA	shRNA	
CD82 shRNA-2	CTTCTACAACTGGACAGACAA	shRNA	
CD82 shRNA-3	AAGAGCAGTTTCATCTCTGTC	shRNA	
CD82 shRNA-5	CCTGGCCGACAAGAGCAGTTT	shRNA	
GSK3β shRNA	AAGTGATTGGCAATGGAATGGCTCAT	shRNA	
β-Catenin siRNA	AGCTGATATTGATGGACAGdTdT	siRNA	
Lamin A/C siRNA	C siRNA CUGGACUUCCAGAAGAACAdTdT		
P1 fwd	CTCATCAACCCACACCTCCT	ChIP	
P1 rev	CTAGCCCTTGAATTCCCACA	ChIP	
P2 fwd	ACAGGGTTTCATCCTGTTGC	ChIP	
P2 rev	CCTACAGCCACCTCTTCGTC	ChIP	
Human p63 fwd	GTTATCCGCGCCATGCCTGTCTAC	Q-PCR	
Human p63 rev	TCCCCTCTACTCGAATCAAATG	Q-PCR	
CD82 fwd	AGCGCGGAGCAGAAAGCAGAACC	Q-PCR	
CD82 rev	GCCCCCACGCCGATGAAGACA	Q-PCR	
β-Catenin fwd	GTGGAGGGGGTCCGCATGGAAGAA	Q-PCR	
β-Catenin rev	GAGAATAAAGCAGCTGCACAAACAATGGA	Q-PCR	
GAPDH fwd	GGGGAGCCAAAAGGGTCATCATCT	Q-PCR	
GAPDH rev	GAGGGGCCATCCACAGTCTTCT	Q-PCR	
Murine ΔNp63α-C306R			
Murine ΔNp63α-C526W			
Murine ΔNp63α fwd	((((((((((((((((((((((((((((((((((((
Murine ΔNp63α rev	GTTAACTCATTCTCCTTCCTC	Cloning	