Dispersion corrected DFT approaches for Anharmonic Vibrational Frequency Calculations: Nucleobases and their Dimers

Teresa Fornaro^a, Malgorzata Biczysko^a, Susanna Monti^{a,b}, and Vincenzo Barone^{*,a}

^{*a*} Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy; E-mail: vincenzo.barone@sns.it. ^{*b*} CNR - Institute of Chemistry of Organometallic Compounds - UOS Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.

Electronic Supplementary Information

Table 1. Experimental, harmonic and anharmonic vibrational frequencies (cm⁻¹) and intensities for adenine molecule.

	Exp.						Calcula	ted						
	Argon matrix ^a		B3L	YP			B3LY	P-D3			B3L	YP-DCP		Assignment ^b
Mode		harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	
1	3569 ^d	3731	57	3536	45	3730	57	3534	45	3746	65	3552	44	$\nu_{asym} NH_2$
2	3508 ^d	3647	87	3482	72	3648	87	3482	72	3651	89	3484	74	$\nu N_9 H$
3	3452 ^d	3598	85	3445	74	3596	85	3443	75	3608	102	3449	97	$\nu_{sym}NH_2$
4		3243	0	3116	2	3241	0	3112	1	3272	0	3149	1	$\nu C_8 H$
5	3057	3171	17	3045	21	3169	17	3042	21	3195	16	3068	18	$\nu C_2 H$
6	1633	1660	599	1621	163	1662	593	1624	273	1714	600	1678	348	$\delta_{sciss}NH_2, \nu C_5C_6, \nu C_6N_6$
7	1612	1639	112	1594	67	1638	112	1594	79	1683	111	1641	91	$\nu N_3 C_4, \nu C_5 C_6$
8	1599	1608	6	1565	2	1609	9	1565	2	1631	58	1586	80	$\delta_{sciss}NH_2,\nu C_4C_5,\nu C_5C_6$
9	1482	1518	9	1483	9	1517	6	1482	7	1555	22	1521	25	$\nu N_7 C_8, \delta C_8 H$
10	1474	1503	76	1463	38	1503	79	1463	25	1539	35	1498	7	$\nu N_1 C_6, \delta C_2 H, \nu C_2 N_3, \nu C_6 N_6$
11	1419	1435	31	1406	19	1435	30	1406	19	1483	45	1453	29	$\nu C_4 C_5,\nu C_4 N_9,\delta C_2 H$
12	1389	1417	8	1381	6	1416	8	1379	7	1455	23	1419	10	$\delta N_9 H, \delta C_2 H, \nu C_4 N_9, \nu C_8 N_9$
13	1345	1368	48	1337	24	1367	45	1337	22	1416	66	1384	38	$\delta C_2 H,\nu C_8 N_9,\delta C_8 H,\nu C_6 N_6$
14	1328	1359	27	1330	33	1357	31	1328	34	1398	29	1370	18	vN1C2, vC5N7, vC4C5

15	1290	1333	58	1298	51	1331	58	1296	55	1377	37	1348	36	vC_2N_3 , vN_1C_2
16	1240	1266	23	1240	19	1264	24	1239	20	1290	19	1267	18	$\delta C_8 H, \nu N_7 C_8, \delta N_9 H$
17	1229	1245	13	1224	3	1245	13	1224	7	1269	12	1250	8	$\delta_{rock}NH_2,\nu C_5N_7,\nu C_2N_3$
18	1127	1144	22	1124	11	1144	21	1122	1	1175	18	1155	11	$\nu C_4 N_9, \delta r, \nu C_6 N_6$
19	1061	1078	19	1054	7	1078	19	1054	9	1107	19	1083	14	$vC_8N_9, \delta N_9H$
20	1017	1016	7	994	7	1019	7	995	5	1021	3	998	1	$\delta_{rock}NH_2, \nu N_1C_6$
21	958	973	4	953	3	972	4	953	3	994	3	976	3	$\gamma C_2 H$
22	927	944	15	929	12	944	15	929	11	955	14	942	11	$\delta r, \nu C_4 C_5$
23	887	898	11	886	9	898	11	885	8	906	13	894	7	δ R
24	848	854	4	814	20	853	3	813	19	884	2	867	2	$\gamma C_8 H$
25	802	825	14	778	6	825	14	779	6	856	13	840	12	$\gamma C_8 H,\tau R,\tau r,\gamma C_6 N_6$
26	717	725	3	715	2	725	3	715	2	741	3	732	3	vN ₃ C ₄ , vC ₅ N ₇ , vC ₄ N ₉ (ring breathing)
27	678	692	1	666	2	691	1	665	2	710	0	699	0	$\gamma C_6 N_6$, τr , τR
28	655	666	7	651	10	666	7	651	10	680	6	668	7	τr
29	610	618	0	610	1	618	0	609	1	625	1	618	1	$\delta r, vC_5C_6, \delta R$
30	566	581	61	545	6	580	60	544	0	591	61	578	50	$\gamma N_9 H, \gamma C_2 H, \tau R, \tau r$
31		534	29	487	141	534	18	498	214	537	3	532	3	δ R, $\gamma N_9 H$
32	513	532	17	515	60	532	24	505	15	554	1	514	75	$\tau NH_2,\gamma N_9H$
33		527	22	493	4	527	25	491	41	528	4	523	3	$\tau NH_2,\delta R,\delta C_6N_6,\nu C_4N_9$
34	503	512	3	487	45	513	3	486	60	542	53	528	36	$\tau NH_2,\gamma N_9H$
35		300	0	293	0	300	0	292	0	306	0	302	0	τRr
36	276	277	15	274	14	281	14	277	13	282	12	280	12	$\delta C_6 N_6, \delta R, \delta r$
37	214	240	134	240 ^c	107	239	128	239°	103	228	1	228 ^c	0	$\tau Rr, \gamma_{wagg} NH_2$
38	184^{f}	207	94	208°	77	205	100	205°	81	104	158	105 ^c	101	$\gamma_{wagg}NH_2, \tau Rr$
39		165	1	158	1	165	1	157	1	168	38	153	30	$\tau Rr, \gamma C_6 N_6$

^aFrom Ref.³⁴.

^bAbbreviations: v =stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; R and r refer to the 6-membered ring and 5-membered ring, respectively.

^cModes excluded from the anharmonic calculation.

^dFrom Ref.¹⁴⁶.

^fFrom Ref.¹⁴⁴.

	Exp.						Calcul	ated						
	Argon matrix ^{a,b} (amino-oxo form)		B3L	YP			B3LYI	P-D3			B3LYP-	DCP		Assignment ^c
Mode	· · · · ·	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	
1	3563	3733	48	3540	37	3732	48	3538	37	3750	56	3562	24	$\nu_{asym} NH_2$
2	3471	3617	71	3450	53	3617	72	3451	56	3623	70	3457	49	$\nu N_1 H$
3	3440	3597	83	3438	76	3595	84	3433	74	3608	104	3455	121	$\nu_{sym} NH_2$
4		3221	2	3086	3	3220	2	3083	3	3270	0	3137	1	$\nu C_5 H$
5		3196	2	3047	4	3194	2	3043	3	3247	1	3109	2	$\nu C_6 H$
6	1734	1766	759	1736	469	1766	754	1738	442	1794	801	1761	381	vC ₂ O
7	1656	1686	471	1647	255	1685	480	1649	283	1738	421	1702	203	vC_5C_6 , vN_3C_4
8	1595	1629	138	1586	95	1631	129	1585	156	1641	267	1596	296	$\delta_{sciss} NH_2$
9	1538	1568	151	1524	55	1567	149	1534	124	1617	148	1579	118	$vN_{3}C_{4}, vC_{4}C_{5}$
10	1475	1502	148	1461	51	1503	150	1460	126	1538	125	1498	59	$\nu N_3 C_4, \nu C_4 N_4, \delta C_6 H$
11	1422	1442	78	1412	58	1443	77	1412	60	1472	53	1435	36	$\delta N_1 H$
12	1337	1355	52	1328	29	1355	55	1327	30	1377	34	1351	13	$\delta C_6 H, \nu C_4 N_4, \delta C_5 H$
13	1244	1260	23	1225	24	1260	27	1226	28	1310	30	1271	25	$\nu C_2 N_3$
14	1195	1213	50	1192	39	1220	50	1193	38	1236	49	1213	38	$\delta C_6 H,\delta N_1 H,\nu C_6 N_1$
15	1090	1125	2	1111	5	1131	3	1113	5	1139	3	1121	5	$\delta C_5 H, \nu C_6 N_1, \nu C_5 C_6$
16	1088	1092	44	1066	39	1093	44	1065	38	1108	31	1085	23	$\delta_{rock} NH_2$
17		989	1	970	0	988	1	969	0	1005	1	989	1	δ ring, $\nu C_4 C_5$
18		970	0	941	1	969	0	940	1	993	0	971	0	$\gamma C_6 H$
19		926	3	898	5	925	4	897	5	950	2	927	2	$\nu N_1C_2,\nu C_4C_5,\delta_{rock}NH_2$
20	781	793	47	772	38	793	46	772	38	815	43	804	39	$\gamma C_2 O, \tau ring$
21	768	777	3	759	4	776	3	759	3	797	0	785	1	$\gamma C_5 H,\gamma C_4 N_4,\gamma C_2 O$
22	743	769	4	751	4	768	4	750	4	793	3	780	2	ring breathing
23	717	728	37	709	33	727	37	708	33	739	32	723	32	$\gamma C_5 H$, τ ring, $\gamma C_4 N_4$, $\gamma N_1 H$
24	615	641	53	607	53	638	53	606	53	647	55	637	49	$\gamma N_1 H$
25	576	578	3	572	2	578	2	571	2	585	2	579	2	δ ring

Table 2. Experimental, harmonic and anharmonic vibrational frequencies (cm⁻¹) and intensities for cytosine molecule.

26	537	546	3	536	4	546	3	537	3	553	3	545	24	$\delta \text{ ring}, \tau NH_2$
27	529	534	3	518	16	537	3	535	5	543	4	534	5	δ ring, $\tau NH_2,\delta C_2O$
28		526	13	498	22	526	13	494	12	550	4	517	20	τNH_2 , $\delta C_2 O$
29	400	408	16	393	17	407	17	392	18	418	15	413	15	τ ring
30	330	359	3	357	2	363	3	358	3	364	4	363	4	$\delta C_4 N_4, \delta C_2 O$
31		216	214	218 ^d	171	212	205	213 ^d	164					$\gamma_{wagg} NH_2$
32		203	5	194	3	202	13	187	7	204	15	198	8	$\gamma_{wagg} NH_2, \tau \ ring$
33		141	2	135	2	140	2	134	2	136	2	134	2	τ ring

^aFrom Ref.³⁵.

^bFrom Ref.¹⁴⁷.

 $^{c}Abbreviations: \nu = stretching; \delta = in-plane \ bending; \gamma = out-of-plane \ bending; \tau = torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric.$

^dModes excluded from the anharmonic calculation.

	Exp.						Calculat	ed						
	Ar matrix ^a		B3L	YP			B3LYF	P-D3			B3LYP	-DCP		Assignment ^b
Mode		harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I (anh)	
1	3482	3639	105	3473	88	3639	106	3473	88	3643	113	3475	86	$\nu N_1 H$
2	3433	3594	68	3427	17	3595	68	3430	55	3598	69	3429	56	$\nu N_3 H$
3	3130	3246	1	3111	0	3246	1	3109	0	3293	4	3162	3	vC ₅ H
4		3205	2	3062	3	3203	2	3060	3	3252	1	3118	1	vC ₆ H
5	1762	1798	623	1771	347	1799	630	1770	492	1832	644	1801	113	vC ₂ =O
6	1733	1764	771	1749	436	1765	761	1749	232	1801	796	1773	417	vC4=O
7	1644	1673	61	1640	63	1672	62	1638	64	1728	32	1694	42	$vC_5=C_6$
8	1473	1499	88	1463	55	1500	82	1463	52	1535	128	1492	88	ν ring, $\delta N_1 H$
9	1401	1381	33	1349	14	1383	48	1350	15	1401	9	1362	11	$\delta N_3 H + \delta C H$
10	1389	1417	13	1386	9	1417	8	1386	8	1430	21	1396	17	ν ring, $\delta N_1 H$, $\delta N_3 H$
11	1359	1403	93	1372	73	1405	87	1371	69	1450	67	1418	49	ν ring, δN₃H, δCH

12	1219	1227	2	1202	20	1230	8	1204	26	1225	84	1203	82	ν ring, δNH, δCH
13	1186	1195	107	1167	87	1199	106	1165	81	1277	11	1242	5	ν ring, δNH, δCH
14	1076	1085	5	1064	5	1087	5	1062	7	1109	8	1091	7	$\nu \ ring, \ \delta CH, \ \ \delta N_1 H$
15	987	992	7	977	8	991	8	976	8	1005	6	979	5	δring
16	963	964	9	942	9	968	9	946	9	994	68	973	49	$\nu \ ring, \delta N_3 H, \delta C H$
17	958	973	0	949	0	972	0	948	0	1005	0	981	0	γСН
18	806	822	65	803	50	822	65	803	50	845	41	830	42	$\gamma C_4=O, \gamma CH$
19	757	769	34	746	32	769	34	745	32	792	5	778	4	$\gamma C_2 = O$
20	759	770	3	753	2	769	3	752	2	794	7	780	7	ring breathing
21	718	731	17	713	14	731	17	712	14	745	5	732	5	γСН
22	662	689	66	643	58	687	66	641	61	699	20	679	19	$\gamma N_3 H$
23	562	571	43	530	31	569	43	528	31	581	22	577	19	$\gamma N_1 H$
24	551	559	5	550	5	561	4	560	3	572	59	563	57	δring
25	537	542	7	535	7	542	9	535	8	555	2	548	1	δC=Ο
26	516	521	21	515	20	523	21	516	20	531	29	525	29	δring
27	391	387	21	387	19	389	21	387	19	396	18	395	14	$\delta C=O, \delta ring$
28	411	401	22	391	24	400	22	390	24	411	22	407	20	torsion
29	185	170	0	163	0	170	0	162	0	170	0	168	0	torsion
30		155	2	147	2	154	2	146	2	153	2	152	2	torsion

^a From Ref.^{145,154,155}.

^b Abbreviations: v =stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric.

	Exp.						Calcu	ulated						
	Argon matrix ^a (oxo-N ₁ H-N ₉ H)		B3	LYP			B3LYP	-D3			B3L	YP-DCP		Assignment ^b
Mode		harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	
1	3465	3641	86	3475	71	3641	86	3478	71	3644	89	3479	74	vN ₉ H
2	3428	3588	67	3421	52	3588	67	3422	48	3592	73	3422	58	vN_1H
3		3248	0	3120	1	3245	0	3116	1	3275	0	3150	1	$\nu C_8 H$
4		3182	3	3051	5	3180	3	3047	4	3211	2	3083	1	vC ₂ H
5	1753/1742	1790	719	1755	570	1791	718	1756	562	1829	703	1799	452	vC ₆ O
6	1608	1626	85	1590	54	1625	85	1590	54	1673	87	1635	52	$\nu C_2 N_3,\delta C_2 H$
7	1556	1590	71	1549	53	1590	72	1549	26	1637	70	1598	58	$\nu N_3 C_4, \nu C_4 C_5$
8	1472	1526	29	1494	24	1525	28	1493	24	1571	16	1538	15	$\nu N_7 C_8, \nu C_4 C_5$
9	1424	1479	5	1441	2	1480	4	1440	1	1515	3	1474	2	$vN_7C_8, \delta N_1H$
10	1400	1432	6	1398	2	1433	6	1397	2	1474	16	1436	8	$\delta N_1 H, \delta C_2 H, \nu C_4 C_5$
11	1342	1403	19	1367	12	1402	19	1367	12	1439	26	1395	17	$\delta N_9 H, \delta C_2 H$
12	1338	1372	32	1336	28	1371	32	1336	27	1416	39	1379	35	$\nu C_5 N_7,\delta C_2 H,\nu C_2 N_3$
13	1332	1355	5	1329	6	1356	5	1331	4	1387	3	1360	3	$\nu C_4 N_9, \nu C_5 C_6, \delta C_8 H$
14		1293	5	1265	3	1292	6	1264	3	1323	10	1293	4	$\delta C_8 H$
15	1173	1188	77	1162	62	1189	78	1162	63	1225	69	1197	56	$\delta C_8 H$
16	1100	1135	10	1110	15	1138	10	1111	13	1165	8	1139	12	$\nu N_1 C_2, \delta N_1 H$
17		1074	14	1048	18	1075	15	1048	18	1104	16	1079	16	vC_8N_9 , δN_9H
18	1049	1063	42	1032	41	1062	42	1031	41	1110	28	1083	21	$\nu N_1 C_6, \delta C_6 O$
19	919	947	6	932	4	947	6	934	2	957	6	942	4	δr
20	906	935	3	911	3	934	3	910	3	953	3	935	3	$\gamma C_2 H$
21	877	902	9	887	7	901	9	886	7	911	11	899	6	δR
22	808	842	6	813	20	841	6	811	19	874	4	855	0	$\gamma C_8 H$
23	786	810	19	766	8	810	19	766	10	843	17	826	17	$\gamma C_6 O, \tau R, \tau r$
24	701	741	40	709	31	740	39	708	29	755	33	742	31	$\gamma N_1 H$, $\gamma C_6 O$
25	687	701	10	689	11	700	10	689	11	723	8	712	9	$\nu N_3 C_4, \nu N_1 C_6$
26	663	675	24	650	19	674	24	649	20	685	22	673	27	$\tau r, \gamma N_1 H$
27	624	658	6	635	13	657	6	634	14	665	15	652	12	$\gamma N_1 H$, τr

Table 4. Experimental, harmonic and anharmonic vibrational frequencies (cm⁻¹) and intensities for hypoxanthine molecule.

28	581	607	8	599	7	608	8	600	7	619	8	611	7	$\delta r, \nu C_5 C_6$
29	560	581	115	524	86	580	114	526	86	590	111	578	101	$\gamma N_9 H$
30	529	537	11	531	10	537	11	531	10	546	11	539	11	δR , $\delta C_6 O$
31	510	539	5	501	79	538	5	501	79	548	4	540	5	$\gamma N_9 H$
32		509	2	503	2	510	2	503	2	519	2	512	1	δR
33		322	1	318	1	322	1	318	1	326	1	323	1	$\delta C_6 O, \delta r R$
34		271	0	262	0	270	0	262	0	277	0	273	0	τrR
35		209	16	202	15	208	16	201	15	213	17	211	16	τrR
36		156	2	149	1	155	2	149	1	154	2	151	1	τrR

^a From Ref.³⁶.

^b Abbreviations: v = stretching; $\delta = \text{in-plane bending}$; $\gamma = \text{out-of-plane bending}$; $\tau = \text{torsional}$; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; R and r refer to the 6-membered ring and 5-membered ring, respectively.

Table 5. Experimental, harmonic and anharmonic vibrational frequencies (cm⁻¹) and intensities for thymine molecule.

	Exp.						Calcula	ted						
	Argon matrix ^a		B3L	YP			B3LY	P-D3			B3LYF	P-DCP		Assignment ^b
Mode		harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	harm	I(harm)	anharm	I(anh)	
1	3479	3640	103	3473	86	3640	103	3472	85	3645	111	3472	72	vN_1H
2	3432	3595	67	3430	50	3596	67	3431	53	3600	69	3430	50	vN ₃ H
3		3196	4	3064	4	3194	4	3059	6	3244	2	3115	1	$\nu C_6 H$
4	2992	3111	14	2964	7	3110	14	2963	10	3173	7	3029	6	$v_{asym}CH_3$
5	2969	3089	9	2945	12	3088	9	2943	12	3141	2	2997	4	$v_{out-of-plane}CH_3$
6	2939	3030	22	2937	18	3028	22	2934	18	3076	15	2969	11	$v_{sym}CH_3$
7	1767	1795	764	1767	499	1795	768	1768	492	1828	797	1794	222	vC_2O , vC_2N_3 , vN_1C_2
8	1711	1748	637	1718	382	1749	629	1719	449	1788	661	1752	438	vC4O, vN3C4
9	1668	1699	39	1662	35	1700	38	1662	18	1759	2	1725	59	$\nu C_5 C_6, \delta C_6 H, \nu C_4 O, \nu N_1 C_6$
10	1472	1499	79	1456	35	1499	76	1456	44	1540	126	1495	83	$\nu C_6 N_1,\delta N_1 H,\delta_{sciss} C H_3$
11	1455	1488	10	1452	4	1488	7	1450	4	1488	1	1451	1	$\delta_{sciss}CH_3$
12	1431	1465	7	1428	6	1464	7	1428	5	1464	10	1430	7	γCH_3

13	1405	1419	61	1386	5	1419	70	1384	30	1463	44	1433	32	inv CH ₃ , δN_1 H, $\nu C_2 N_3$
14	1388	1421	32	1388	140	1423	25	1389	97	1432	21	1402	17	inv CH ₃ , δN_1 H, $\nu C_2 N_3$
15	1367	1399	7	1365	4	1405	8	1367	5	1418	5	1386	7	$\delta N_3 H$, $\delta C_6 H$
16	1357	1373	6	1343	9	1375	8	1344	5	1399	8	1370	4	$\delta C_6 H$, $\delta N_3 H$
17	1220	1230	11	1198	12	1228	11	1196	13	1290	7	1258	11	vC ₅ -CH ₃ , vN ₁ C ₆
18	1183	1197	142	1173	66	1203	146	1174	81	1239	113	1211	62	$\delta C_6 H,\delta N_1 H,\nu N_1 C_6$
19	1139	1155	4	1127	5	1156	4	1126	5	1193	17	1170	11	$\nu N_3 C_4, \nu N_1 C_6$
20	1046	1069	1	1043	1	1068	1	1043	1	1076	3	1053	3	$\delta_{rock}CH_3, \gamma_{wagg}C_5-CH_3$
21	1004	1022	2	1003	2	1024	2	1005	2	1031	3	1014	1	$\delta_{rock}CH_3, \delta ring$
22	959	965	13	947	12	969	13	948	12	987	12	964	9	$\delta_{rock}CH_3,\delta N_3H,\nu N_1C_2,\nu C_2N_3$
23	889	911	16	889	9	910	16	886	5	931	11	911	8	$\gamma_{wagg}C_6H$, γ ring
24	799	804	5	794	5	805	6	794	4	821	6	807	6	δ ring, vC_5-CH_3, vN_1C_2
25	763	786	35	760	19	786	34	761	19	813	34	798	31	$\gamma_{wagg}C_4O, \gamma_{wagg}C_5$ -CH ₃ , $\gamma_{wagg}N_3H$, γ ring
26	754	762	28	742	16	762	28	743	18	784	24	774	23	$\begin{array}{c} \gamma_{wagg}C_2O,\gamma_{wagg}N_3H,\;\;\gamma_{wagg}N_1H,\gamma\\ ring \end{array}$
27	727	734	5	722	4	736	5	722	4	767	5	755	4	$\nu C_4 C_5$, νC_5 -CH ₃ , δ ring
28	662	691	61	633	77	689	62	631	79	699	62	676	57	$\gamma_{wagg}N_{3}H, \gamma ring, \gamma_{wagg}N_{1}H, \gamma_{wagg}C_{2}O$
29	601	606	1	601	1	610	1	604	1	618	1	613	1	$\delta C_2 O, \delta C_4 O, \delta C_5 \text{-} CH_3, \delta ring$
30	545	570	59	507	36	567	59	504	38	576	56	566	54	$\gamma_{wagg}N_1H, \gamma_{wagg}N_3H, \gamma_{wagg}C_4O, \gamma$ ring
31	540	547	7	539	7	548	8	539	7	560	8	554	7	δ ring, $\delta C_4 O$
32	455	461	19	458	19	463	19	459	18	472	17	461	16	δ ring
33		406	17	389	21	405	17	388	22	416	17	410	16	γ ring
34		389	20	387	19	391	20	389	19	398	20	397	19	$\delta C_2 O, \delta C_4 O, \nu N_3 C_4$
35		303	0	293	0	301	0	292	0	308	1	310	1	$\gamma_{wagg}C_5$ -CH ₃ , γ ring
36		278	3	279	3	283	3	282	2	287	3	292	2	δC_5 -CH ₃ , δC_4O
37		159	1	151	1	158	1	150	1	158	2	158	2	γ ring
38		153	1	148	0	150	1	151	1	166	0	172	0	$\tau \mathrm{CH}_3$
39		113	0	110	0	113	0	110	0	114	0	113	0	γ ring

^a From Ref.³⁹.

^b Abbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; inv= inversion; asym = asymmetric; sym = symmetric.

Table 6. Deviations between computed anharmonic vibrational frequencies (in cm⁻¹) of nucleobases and experimental data^a.

	adenine	cytosine	uracil	hypoxanthine	thymine	all
	MAE ^b					(weighted average)
B3LYP	12.0	11.2	11.8	11.3	9.3	11.1
B3LYP-D3	12.3	11.0	12.3	11.2	9.9	11.4
B3LYP-DCP	24.0	18.4	18.7	31.9	20.3	22.6
	MIN ^c					(minimum value)
B3LYP	-34	-23	-32	-36	-38	-38
B3LYP-D3	-35	-25	-34	-34	-41	-41
B3LYP-DCP	-80	-14	-17	-6	-7	-80
	MAX ^d					(maximum value)
B3LYP	26	27	18	26	7	27
B3LYP-D3	25	28	16	25	8	28
B3LYP-DCP	55	46	72	66	57	72

^a From Ref. 31,32,34-36,39,145,147.

^bMean absolute error to the experimental results.

^cMinimum negative deviation to the experimental results.

^dMaximum positive deviation to the experimental results.

Table 7. Deviations of harmonic and anharmonic vibrational frequencies (in cm⁻¹) of nucleobases computed with B3LYP-D3 and B3LYP-DCP respect to the B3LYP method.

	MAE ^a			MIN ^b			MAX ^c		
	$\Delta harm^d$	$\Delta anharm^{e}$	$\Delta GVPT2^{\rm f}$	$\Delta harm^d$	∆anharm ^e	$\Delta GVPT2^{\rm f}$	$\Delta harm^d$	∆anharm ^e	$\Delta GVPT2^{\rm f}$
adenine									
D3	1.7	2.2	2	-14	-17	-19	15	18	20
DCP	18.7	29.1	6.8	-103	-102	-23	53	62	42
cytosine									
D3	1.4	2.4	2.3	-4	-7	-6	7	17	14
DCP	21.2	24.0	4.8	-5	-1	-8	52	62	24
uracil									
D3	1.3	1.5	1.2	-2	-3	-6	4	10	8
DCP	22.8	24.7	6.1	-2	1	-13	82	75	37
hypoxanthine									
D3	0.8	1.0	0.7	-2	-4	-2	3	3	3
DCP	22.8	27.5	6.2	-2	1	-8	46	60	44
thymine									
D3	1.7	1.4	1.4	-3	-5	-6	6	4	6
DCP	22.9	26.1	6.3	-1	-2	-14	61	65	52
all									
D3	1.4	1.7	1.5	-14	-17	-19	15	18	20
DCP	21.6	26.4	6.1	-103	-102	-23	82	75	52

^aMean absolute error.

^bMinimum negative deviation.

^cMaximum positive deviation.

^dDeviation between harmonic frequencies.

^eDeviation between anharmonic frequencies.

^fDeviation of anharmonic shift for the selected method respect to B3LYP method.

ΔE_{bind}	Ref	Optimized geometry
Uracil-Uracil hydrogen-bonded		
B3LYP	-11.4	-13.5
B3LYP-D3	-14.9	-16.7
B3LYP-DCP	-13.8	-15.8
Ref a (CBS)	-15.7	
Uracil-Uracil stacked		
B3LYP-D3	-5.8	-9.3
B3LYP-DCP	-3.9	-7.8
Ref a (CBS)	-7.9	
Adenine-Adenine hydrogen-bonded		
B3LYP	-9.3	-10.2
B3LYP-D3	-13.1	-13.9
B3LYP-DCP	-11.8	-12.9
Ref b (CBS)	-13.2	
Adenine-Adenine stacked		
B3LYP-D3	-5.6	-7.3
B3LYP-DCP	-4.5	-6.6
Ref c (CBS)	-8.3	
Adenine-Naphthalene stacked		
B3LYP-D3	-2.3	-7.9
B3LYP-DCP	+3.6	-7.1
Ref d (CBS)	-8.5	
^a p c ¹³⁷		

Table 8. Counterpoise-corrected binding energy (ΔE_{bind}) of hydrogen-bonded and stacked dimer structures in kcal mol-1 compared to reference values.

^a Ref.¹³⁷

^b Ref.¹³⁸

^c Ref.¹³⁹

^d Ref.¹⁴⁰

	B3LYP	B3LYP-D3	B3LYP-DCP	Ref ^b
Uracil-Uracil hydrogen-bonded				
А	0.046747	0.046663	0.047372	0.046977
В	0.007470	0.007558	0.007619	0.007910
С	0.006441	0.006505	0.006563	0.006770
MAE ^a , %	3.6	3.0	2.5	
Uracil-Uracil stacked				
А		0.022792	0.023083	0.022812
В		0.018301	0.018077	0.020433
С		0.017017	0.017235	0.019037
MAE ^a , %		7.0	7.4	
Adenine-Adenine hydrogen-bonded				
А	0.038408	0.038394	0.038869	0.038507
В	0.004313	0.004369	0.004408	0.004399
С	0.003878	0.003923	0.003959	0.003948
MAE ^a , %	1.3	0.5	0.5	
Adenine-Adenine stacked				
А		0.016851	0.017303	0.015827
В		0.013524	0.013326	0.014517
С		0.011780	0.011765	0.012261
MAE ^a , %		5.7	7.2	
Adenine-Naphthalene stacked				
А		0.019729	0.019946	0.020394
В		0.011048	0.011366	0.011999
С		0.010480	0.010740	0.011592
MAE ^a , %		6.9	4.9	
All				
AVERAGE MAE ^a , %	2.5	4.7	4.5	

Table 9. Rotational constants in cm⁻¹ of optimized dimer structures, computed with B3LYP, B3LYP-D3 and B3LYP-DCP methods, compared with reference structures.

^a Mean absolute error.

^b Ref.¹³⁷⁻¹⁴⁰

	B3LYP	B3LYP-D3	B3LYP-DCP	Ref	Error, % B3LYP	Error, % B3LYP-D3	Error, % B3LYP-DCP		
	Uracil-Uracil hydrogen-bonded								
r N3-O'2	2.85978	2.82872	2.82865	2.68192	-6.6	-5.5	-5.5		
r O4-N'1	2.7975	2.7743	2.76913	2.62376	-6.6	-5.7	-5.5		
r H3-O'2	1.82963	1.79574	1.79794	1.65586	-10.5	-8.4	-8.6		
r O4-H'1	1.76572	1.74032	1.73641	1.59862	-10.5	-8.9	-8.6		
α N3-H3-O'2	172.59961	173.77026	173.09168	173.86721	0.7	0.1	0.4		
α H3-O'2-C'2	126.714	125.55512	125.97066	125.2688	-1.2	-0.2	-0.6		
α C4-O4-H'1	128.91291	127.49196	127.72335	127.42064	-1.2	-0.1	-0.2		
α O4-H'1-N'1	175.2903	176.39592	175.80687	176.12931	0.5	-0.2	0.2		
		Ur	acil-Uracil stac	ked					
r N3-C'2		3.04174	3.12506	2.77937		-9.4	-12.4		
r C2-N'3		3.04174	3.12506	2.77937		-9.4	-12.4		
r N1-C'4		3.40125	3.38928	3.08074		-10.4	-10.0		
r C4-N'1		3.40125	3.38928	3.08074		-10.4	-10.0		
r C5-C'6		3.87457	3.75362	3.47734		-11.4	-7.9		
r C6-C'5		3.87457	3.75362	3.47735		-11.4	-7.9		
		Adenine-A	Adenine hydrog	gen-bonded					
r H _{am} -N'1	1.97256	1.91889	1.93355	1.92463	-2.5	0.3	-0.5		
r N6-N'1	3.00103	2.9498	2.96206	2.94839	-1.8	0.0	-0.5		
r N1-H' _{am}	1.97255	1.91889	1.93355	1.92297	-2.6	0.2	-0.6		
r N1-N'6	3.00103	2.9498	2.96206	2.9466	-1.8	-0.1	-0.5		
α N6-H _{am} -N'1	178.78511	178.53519	177.83965	178.17496	-0.3	-0.2	0.2		
α H _{am} -N'1-C'6	119.96032	120.1782	120.40863	120.29665	0.3	0.1	-0.1		
α N1-H' _{am} -N'6	178.78511	178.53511	177.83968	178.16992	-0.3	-0.2	0.2		
α C6-N1-H' _{am}	119.96037	120.17823	120.4088	120.34323	0.3	0.1	-0.1		
		Ader	nine-Adenine st	acked					
r N1-C'8		3.5519	3.51297	3.32667		-6.8	-5.6		
r C2-N'7		3.39262	3.35714	3.30988		-2.5	-1.4		
r N3-N'7		3.69738	3.76167	3.53667		-4.5	-6.4		
r C4-C'5		3.58781	3.63799	3.42621		-4.7	-6.2		
r C5-C'4		3.62091	3.63801	3.42621		-5.7	-6.2		
r C6-N'9		3.66363	3.65277	3.40615		-7.6	-7.2		
r N6-H'9		3.82444	3.78039	3.4561		-10.7	-9.4		
r N7-C'2		3.29564	3.35714	3.30988		0.4	-1.4		
r N7-N'3		3.74249	3.76169	3.53667		-5.8	-6.4		
r C8-N'1		3.41169	3.51296	3.32667		-2.6	-5.6		
r N9-C'6		3.55295	3.65275	3.40615		-4.3	-7.2		
r H9-N'6		3.50834	3.78037	3.4561		-1.5	-9.4		
		Adenin	e-Naphthalene	stacked					
r N1-C'3		3.65537	3.54329	3.23751		-12.9	-9.4		
r C2-C'4		3.53176	3.50262	3.21905		-9.7	-8.8		
r N3-C'10		3.53101	3.55512	3.28405		-7.5	-8.3		
r C4-C'10		3.29891	3.29056	2.98317		-10.6	-10.3		
r C5-C'9		3.79718	3.69504	3.37665		-12.5	-9.4		
r C5-C'1		3.7135	3.60016	3.30096		-12.5	-9.1		

Table 10. Structural parameters of optimized hydrogen-bonded and stacked dimer structures compared to reference structures¹³⁷⁻¹⁴⁰.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2014

r C6-C'2	3.73934	3.58268	3.26696	-14.5	-9.7
r N6-C'2	3.97407	3.77379	3.39036	-17.2	-11.3
r N7-C'1	3.57398	3.47089	3.1805	-12.4	-9.1
r N7-C'9	3.69806	3.60085	3.31383	-11.6	-8.7
r C8-C'8	3.40076	3.38853	3.12415	-8.9	-8.5
r N9-C'7	3.62581	3.67613	3.42655	-5.8	-7.3
r N9-C'6	3.5546	3.60922	3.36418	-5.7	-7.3
r N9-C'5	3.40637	3.45271	3.23149	-5.4	-6.8

Legend: Atoms of monomer 2 are indexed with apostrophe; r = distance between atoms in Å; $\alpha = angle$ between

atoms in degree units. Uracil dimers: O2 = oxigen bonded to C2; O4 = oxigen bonded to C4; H3 = hydrogen

bonded to N3; H1 = hydrogen bonded to N1. Adenine dimers: Ham = amino group hydrogen atom.

	MAE, % B3LYP	MAE, % B3LYP-D3	MAE, % B3LYP-DCP
Uracil-Uracil hydrogen-bonded	4.7	3.6	3.7
Uracil-Uracil stacked		10.4	10.1
Adenine-Adenine hydrogen-bonded	1.2	0.2	0.3
Adenine-Adenine stacked		4.8	6.0
Adenine-Naphthalene stacked		10.5	8.9

Table 11. Mean absolute errors (MAE) of structural parameters of optimized dimer structures,computed with B3LYP, B3LYP-D3 and B3LYP-DCP methods, compared to reference structures

Table 12. Anharmonic vibrational frequencies (cm ⁻¹) of hydrogen-bonded uracil dimer, computed using B3LYP, B3I	LYP-D3
and B3LYP-DCP approaches, and corresponding shifts respect to the isolated molecule (Δ hb).	

Table 12 and B3L	2. Anharmon YP-DCP app	ic vibrational freq proaches, and corre	uencies (cr esponding	n) of hydrogen- shifts respect to t	bonded ura	molecule (Δhb).	ted using B3LYP, B3LYP-D3
	B3I VP		B3I YP-D3	B	3I YP-DC	P	Assignment ^a
Mode	anharm	Ahb	anharm	Ahb	anharm	Ahb	Assignment
1	3473	0.2	3472	-1.3	3473	-1.5	vN1H (M1)
2	3429	2.2	3427	-2.9	3432	3.1	vN3H (M2)
3	3111	0.2	3098	-10.2	3163	1.5	vC5H (M1)
4	3116	5.6	3117	8.0	3163	0.8	vC5H (M2)
5	3002	-424.6, -470.4	2926	-503.1, -546.4	2947	-482.0, -527.5	vN3H (M1), vN1H (M2)
6	3068	5.7	3066	6.6	3120	1.9	vC6H (M1)
7	3072	9.6	3072	12.4	3127	9.2	vC6H (M2)
8	2897	-530.0, -575.8	2870	-559.7, -546.4	2880	-549.4, -594.9	vN3H (M1), vN1H (M2)
9	1782	11.0	1783	13.5	1815	13.5	vC2=O (M1)
10	1743	-6.4	1746	-2.7	1759	-14.0	vC2=O, vC4=O, v ring, δ N1H (M
11	1700	-49,9	1699	-49.4	1735	-38.4	vC2=O, vC4=O, δNH (M2)
12	1679	-70.8	1676	-72.4	1715	-58.1	$vC4=0$, v ring, $\delta N3H$ (M1)
13	1635	-4.2	1635	-3.8	1695	0.9	vC5=C6 (M2)
14	1625	-14.1	1624	-14.8	1685	-8.7	vC5=C6 (M1)
15	1511	48.6	1515	52.3	1535	42.3	δN1H (M2)
16	1474	102.0	1475	104.9	1514	95.4	$v \operatorname{ring} \delta N1H \delta N3H (M1)$
17	1434		1445		1457		δN3H (M1)
18	1404		1403		1453		v ring. δN1H. δCH (M2)
19	1390		1390		1429		v ring, δN1H, δCH (M1)
20	1387	13	1382	-36	1409	12.9	$\delta N3H + \delta CH (M2)$
21	1360	11.1	1356	6.6	1381	19.1	$\delta N3H$ (M2), v ring, δCH (M1)
22	1356	6.9	1350	1.9	1371	8.9	$\delta N3H$ v ring (M2), δCH (M1)
23	1231	0.17	1232	10	1248	0.0	$\delta N1H$ v ring δCH (M2)
24	1202		1204		1262		v ring (M1)
25	1181	-21.4	1183	-21.8	1239	-2.9	v ring $\delta N3H \delta CH (M2)$
26	1188	20.9	1187	21.9	1211	7.4	$\delta N1H$ v ring δCH (M1)
20	1076	20.9	1074	21.9	1101	/.1	δCH (M2)
28	1074	10.3	1074	11.5	1096	57	$\delta CH \delta N1H (M1)$
20	980	2.4	981	5.0	1012	33.3	$\delta \operatorname{ring}(M1, M2)$
30	978	0.4	978	2.2	997	18.4	$\delta \operatorname{ring}(M2, M1)$
31	917	0.4	880	2.2	993	10.4	γ CH γ N1H (M2) γ N3H (M1)
32	958	-18.8	964	-11 4	984	5.1	$\delta \operatorname{ring}(M1)$
33	944	-4.8	943	-11.4	985	4.2	γ CH (M1)
34	957	14.3	957	10.3	981	8.3	v ring $\delta N3H \delta CH (M2)$
35	797	14.5	832	10.5	922	0.5	vN3H (M1) vN1H vCH (M2)
36	728		738		877		γ N1H γ CH (M2) γ N3H (M1)
37	800	-3.0	796	-63	833	3.2	$\gamma C A = 0 \ \gamma C H (M1)$
38	811	-3.0	809	62	834	5.2 4.4	$\gamma C4=0$ $\gamma CH(M2)$
30	769	14.5	767	15.2	701	+.+ 11.0	$\gamma C = 0, \gamma C = 1 (W = 2)$
39 40	764	14.5	763	1 <i>3.2</i> 11 <i>A</i>	788	77	ring breathing $(M1, M2)$
40 /1	7.04	57	703	5 1	700	10.1	$\frac{1}{2} = \frac{1}{2} $
41	740	-J.1 167	740	-J.1 16 1	100 776	10.1	$\gamma C 2 = O(M1)$
42 42	712	-10./	711	-10.1	//0 	-1.9	$\gamma C 2 = O(M1)$
43	/13	-0.5	700	-1.9	151	5.5	$\gamma CH (M1)$
44	/11	0.5	/08		/30		$\gamma \operatorname{ring}(M2)$

46	504	-25.2	536	8.3	599	21.9	γN1H (M1)
47	570	20.4	572	12.3	586	22.7	δ ring (M2)
48	556	21.1	558	23.0	572	24.0	δC=O (M1)
49	552	36.8	551	35.1	568	43.7	δ ring (M1, M2)
50	519	3.9	520	4.0	530	5.7	δ ring (M2)
51	543	156.1	543	155.8	558	162.1	$\delta C=O, \delta ring (M2), \delta ring (M1)$
52	527	140.0	527	139.9	539	143.2	$\delta C=O, \delta ring (M1), \delta ring (M2)$
53	402	11.3	400	10.3	422	14.6	τ (M2)
54	377	-13.6	380	-9.5	422	15.1	τ (M1)
55	411		416		425		δC=O (M1, M2)
56	396		399		407		δC=O (M1, M2)
57	170		169		190		τ (M1, M2)
58	159		163		178		τ (M1, M2)
59	152	-11.4	152	-10.2	170	1.7	τ (M1, M2)
60	145	-2.2	148	1.5	164	12.1	τ (M1, M2)
61	130		135		141		intermolecular mode
62	83		86		85		intermolecular mode
63	48		53		72		τ (M1, M2)
64	62		62		69		intermolecular mode
65	14		9		25		τ (M1, M2)
66					21		τ (M1, M2)

^a Abbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; M1 = Monomer 1; M2 = Monomer 2.

	B3LYP-D3		B3LYP-DCP		Assignment ^a
Mode	anharm	∆stacked	anharm	∆stacked	
1	3362	-111.1	3465	-9.6	vN1H (M1, M2)
2	3374	-98.5	3465	-9.5	vN1H (M1, M2)
3	3394	-35.7	3401	-28.3	vN3H (M1, M2)
4	3396	-33.8	3400	-29.3	vN3H(M1, M2)
5	3113	3.9	3163	0.7	vC5H (M1, M2)
6	3113	4.0	3162	0.5	vC5H (M1, M2)
7	3068	8.7	3125	6.8	vC6H (M1, M2)
8	3068	8.6	3125	7.1	vC6H (M1, M2)
9	1763	-7.1	1803	1.7	vC2=O (M1, M2)
10	1762	-7.9	1797	-4.2	vC2=O (M1, M2)
11	1727	-21.6	1745	-27.9	vC4=O (M1, M2)
12	1689	-59.3	1734	-39.2	vC4=O (M1, M2)
13	1634	-4.0	1694	0.2	vC5=C6 (M1, M2)
14	1635	-3.3	1692	-2.1	vC5=C6 (M1, M2)
15	1474	11.4	1503	10.7	ν ring, δN1H (M1, M2)
16	1478	15.5	1501	8.6	ν ring, δN1H (M1, M2)
17	1385	-0.4	1401	5.1	ν ring, δN3H, δCH (M1, M2)
18	1386	0.0	1399	3.7	ν ring, δN3H, δCH (M1, M2)
19	1384	13.4	1425	6.8	ν ring, δN1H, δN3H (M1, M2)
20	1376	5.7	1420	1.3	ν ring, δN1H, δN3H (M1, M2)

Table 13. Anharmonic vibrational frequencies (cm⁻¹) of stacked uracil dimer, computed using B3LYP-D3 and B3LYP-DCP approaches, and corresponding shifts respect to the isolated molecule (Astacked).

21	1358	7.9	1371	9.5	ν ring, δNH, δCH (M1, M2)
22	1347	-2.5	1371	9.1	ν ring, δNH, δCH (M1, M2)
23	1211	6.4	1245	3.1	ν ring, δCH, δNH (M1, M2)
24	1211	6.7	1243	1.6	ν ring, δCH, δNH (M1, M2)
25	1170	4.4	1211	8.2	ν ring, δNH, δCH (M1, M2)
26	1170	5.2	1208	4.5	ν ring, δNH, δCH (M1, M2)
27	1073	10.9	1093	2.1	ν ring, δCH, δN1H (M1, M2)
28	1073	11.5	1093	2.5	v ring, \deltaCH, \deltaN1H (M1, M2)
29	985	9.6	987	7.9	δ ring (M1, M2)
30	986	10.0	985	5.9	δ ring (M1, M2)
31	948	-0.8	981	0.9	γCH (M1, M2)
32	946	-2.3	981	0.2	γCH (M1, M2)
33	956	9.5	978	5.3	v ring, δN3H, δCH (M1, M2)
34	953	6.9	978	5.4	v ring, δN3H, δCH (M1, M2)
35	808	5.7	832	2.3	γC4=O, γCH (M1, M2)
36	806	3.7	829	-0.5	γC4=O, γCH (M1, M2)
37	772	26.6	791	12.7	γC2=O (M1, M2)
38	750	4.4	775	-2.8	γC2=O (M1, M2)
39	759	7.4	785	4.4	ring breathing (M1, M2)
40	756	4.4	785	5.2	ring breathing (M1, M2)
41	716	3.3	733	1.0	γCH (M1, M2)
42	720	7.6	730	-1.1	γCH (M1, M2)
43	700	59.1	687	7.9	γN3H (M1, M2)
44	686	44.9	690	11.1	γN3H (M1, M2)
45	824	296.1	587	10.4	γN1H (M1, M2)
46	651	123.7	584	7.5	γN1H (M1, M2)
47	565	4.7	564	0.7	δ ring (M1, M2)
48	558	-1.9	563	0.3	δ ring (M1, M2)
49	536	1.2	549	0.9	δC=O (M1, M2)
50	536	0.6	548	0.3	δC=O (M1, M2)
51	523	7.0	521	-3.5	δ ring (M1, M2)
52	526	10.0	521	-3.3	δ ring (M1, M2)
53	411	21.2	419	11.8	τ (M1, M2)
54	405	15.1	412	4.8	τ (M1, M2)
55	389	1.1	395	-0.7	δC=O, δ ring (M1, M2)
56	383	-4.0	396	0.1	δC=O, δ ring (M1, M2)
57	195		188		τ (M1, M2)
58	171		179		τ (M1, M2)
59	170	8.1	173	4.3	τ (M1, M2)
60	165	19.2	149	-2.8	τ (M1, M2)
61	82		66		intermolecular mode
62	47		49		intermolecular mode
63	34		29		intermolecular mode
64	17		16		intermolecular mode
65					intermolecular mode
66					intermolecular mode

^a Abbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; M1 = Monomer 1; M2 = Monomer 2.

Table 14. Anharmonic vibrational frequencies (cm⁻¹) of hydrogen-bonded adenine dimer, computed using B3LYP, B3LYP-D3 and B3LYP-DCP approaches, and corresponding shifts respect to the isolated molecule (Δ hb).

	B3LYP		B3LYP-D3		B3LYP-DCP		Assignment ^a
Mode	anharm	Δhb	anharm	Δhb	anharm	Δhb	
1	3500	-36.2	3502	-32.3	3498	-54.2	$v_{asym}NH_2(M1, M2)$
2	3500	-35.3	3502	-31.7	3499	-53.8	$v_{asym}NH_2$ (M1, M2)
3	3482	-0.9	3484	1.7	3479	-4.5	vN ₉ H (M1, M2)
4	3481	-1.0	3483	1.6	3479	-4.6	vN ₉ H (M1, M2)
5	3001	-443.6	2965	-478.0	2979	-470.4	$v_{sym}NH_2(M1, M2)$
6	2980	-464.7	2897	-546.0	2919	-530.6	$v_{sym}NH_2(M1, M2)$
7	3112	-4.6	3102	-10.1	3149	-0.4	vC ₈ H (M1, M2)
8	3111	-4.8	3101	-11.0	3149	0.0	vC ₈ H (M1, M2)
9	3034	-10.5	3029	-13.6	3062	-5.6	vC ₂ H (M1, M2)
10	3034	-10.8	3030	-12.1	3063	-4.7	vC ₂ H (M1, M2)
11	1648	26.5	1647	23.6	1705	26.6	$\delta_{sciss}NH_2$, νC_5C_6 , νC_6N_6 (M1, M2)
12	1644	22.2	1645	21.6	1579	-99.8	$\delta_{sciss}NH_2$, νC_5C_6 , νC_6N_6 (M1, M2)
13	1604	-17.0	1605	-18.5	1529	-149.6	$\nu C_5 C_6, \nu C_6 N_6, \delta_{sciss} NH_2 (M1, M2)$
14	1591	-30.9	1592	-31.7	1652	-26.4	$\nu C_5 C_6, \nu C_6 N_6, \delta_{sciss} NH_2$ (M1, M2)
15	1584	-9.9	1584	-10.3	1647	6.5	vN_3C_4 , vC_5C_6 (M1, M2)
16	1584	19.6	1583	18.6	1629	43.5	$\delta_{sciss}NH_2$, νC_4C_5 , νC_5C_6 (M1, M2)
17	1492	-72.4	1495	-69.9	1533	-52.4	$\delta_{sciss}NH_2$, νC_6N_6 (M1, M2)
18	1490	6.9	1490	7.8	1536	14.5	$vN_7C_8, \delta C_8H (M1, M2)$
19	1480	-2.7	1481	-1.4	1521	-0.3	$vN_7C_8, \delta C_8H (M1, M2)$
20	1470	7.0	1468	5.2	1509	11.7	$vN_1C_6, \delta C_2H, vC_2N_3, vC_6N_6$ (M1, M2)
21	1418	12.1	1418	11.4	1467	14.8	vC_4C_5 , vC_4N_9 , δC_2H (M1, M2)
22	1417	11.1	1414	8.3	1467	13.9	vC_4C_5 , vC_4N_9 , δC_2H (M1, M2)
23	1380	-0.6	1380	0.8	1430	10.4	$\delta N_9 H$, $\delta C_2 H$, $\nu C_4 N_9$, $\nu C_8 N_9$ (M1, M2)
24	1380	-0.8	1380	0.4	1427	7.5	$\delta N_9 H$, $\delta C_2 H$, $\nu C_4 N_9$, $\nu C_8 N_9$ (M1, M2)
25	1342	5.3	1342	5.1	1393	9.7	$\delta C_2 H$, $\nu C_8 N_9$, $\delta C_8 H$, $\nu C_6 N_6$ (M1, M2)
26	1340	3.0	1340	3.0	1393	9.6	$\delta C_2 H$, $\nu C_8 N_9$, $\delta C_8 H$, $\nu C_6 N_6$ (M1, M2)
27	1324	-5.7	1323	-4.3	1385	15.5	vN_1C_2 , vC_5N_7 , vC_4C_5 (M1, M2)
28	1324	-6.1	1324	-3.7	1383	13.3	vN_1C_2 , vC_5N_7 , vC_4C_5 (M1, M2)
29	1312	14.0	1312	16.4	1359	11.1	vC_2N_3 , vN_1C_2 (M1, M2)
30	1310	12.5	1311	15.1	1357	9.2	vC_2N_3 , vN_1C_2 (M1, M2)
31	1241	1.1	1239	0.5	1274	7.6	$\delta C_8 H$, $\nu N_7 C_8$, $\delta N_9 H$ (M1, M2)
32	1239	-0.8	1236	-28.0	1272	5.5	$\delta C_8 H$, $\nu N_7 C_8$, $\delta N_9 H$ (M1, M2)
33	1239	14.3	1242	17.1	1264	13.3	$\delta_{rock}NH_2, \nu C_5N_7, \nu C_2N_3(M1, M2)$
34	1227	2.7	1229	4.9	1262	11.5	$\delta_{rock}NH_2, \nu C_5N_7, \nu C_2N_3(M1, M2)$
35	1135	11.8	1135	12.6	1168	13.1	vC_4N_9 , δr , vC_6N_6 (M1, M2)
36	1132	8.8	1134	11.5	1166	10.4	vC_4N_9 , δr , vC_6N_6 (M1, M2)
37	1055	1.5	1055	1.5	1083	-0.5	$vC_8N_9, \delta N_9H (M1, M2)$
38	1052	-1.4	1055	1.4	1082	-0.8	$vC_8N_9, \delta N_9H (M1, M2)$
39	1026	32.7	1032	36.8	1052	54.4	δ_{rock} NH ₂ , vN ₁ C ₆ (M1, M2)
40	1018	24.6	1023	28.1	1043	45.4	δ_{rock} NH ₂ , vN ₁ C ₆ (M1, M2)
41	934	-19.4	939	-13.2	968	-8.5	γC ₂ H (M1, M2)
42	934	-19.0	941	-11.3	966	-10.7	$\gamma C_2 H (M1, M2)$
43	931	2.4	932	3.5	946	3.8	$\delta r, vC_4C_5 (M1, M2)$
44	931	1.8	932	3.0	946	3.7	$\delta r, vC_4C_5 (M1, M2)$
45	896	10.6	899	13.5	909	14.6	δ R (M1, M2)

46	894	8.2	895	10.5	906	11.1	δ R (M1, M2)
47	866 ^b		891 ^b		828 ^b		τNH ₂ (M1, M2)
48	749		633		751		$\gamma C_8 H$, $\tau N H_2$ (M1, M2)
49	827	12.8	826	13.2	845	-21.6	$\gamma C_8 H (M1, M2)$
50	716	-97.6	799	-14.2	805	-61.9	$\gamma C_8 H$, $\tau N H_2$ (M1, M2)
51	793	15.4	796	16.2	828	-11.3	$\gamma C_8 H$, τR , τr , $\gamma C_6 N_6 (M1, M2)$
52	673	-105.1	754	-25.0	802	-37.4	$\gamma C_8 H$, τR , τr , $\gamma C_6 N_6 (M1, M2)$
53	720	5.4	721	6.4	744	11.2	$\nu N_3 C_4$, $\nu C_5 N_7$, $\nu C_4 N_9$ (ring breathing) (M1, M2)
54	718	3.5	719	4.3	745	12.7	$\nu N_3 C_4$, $\nu C_5 N_7$, $\nu C_4 N_9$ (ring breathing) (M1, M2)
55	670	4.4	666	1.2	678	-21.3	$\gamma C_6 N_6$, tr, tR (M1, M2)
56	667	0.7	671	5.7	702	2.5	$\gamma C_6 N_6$, tr, tR (M1, M2)
57	649	-1.9	650	-0.5	663	-4.4	τr (M1, M2)
58	646	-5.4	648	-2.5	661	-6.5	τr (M1, M2)
59	632	22.0	633	23.2	644	25.2	δr , vC ₅ C ₆ , δR (M1, M2)
60	624	14.6	626	16.7	635	17.1	δr, νC ₅ C ₆ , δR (M1, M2)
61	541	-3.9	551	6.9	570	-7.8	$\gamma N_9 H$, $\gamma C_2 H$, τR , τr (M1, M2)
62	544	-0.5	552	7.5	560	-17.5	$\gamma N_9 H, \gamma C_2 H, \tau R, \tau r (M1, M2)$
63	535	47.3	539	33.8	545	13.0	δ R ((M1, M2)
64	527	39.9	528	22.6	535	2.9	δ R (M1, M2)
65	464	-51.0	479	-18.8	536	21.8	$\gamma N_9 H (M1, M2)$
66	465	-50.1	479	-18.7	538	23.5	$\gamma N_9 H (M1, M2)$
67	528	1.2	531	45.2	540	16.8	$\delta_{rock}NH_2, \delta R, \delta C_6N_6(M1, M2)$
68	525	31.3	528	42.1	538	15.2	$\delta_{rock}NH_2$, δR , $\delta C_6N_6(M1, M2)$
69	460 ^b	-26.3	469 ^b	-21.7	471 ^b	-57.4	τNH ₂ (M1, M2)
70	459 ^b	-27.9	467 ^b	-23.7	469 ^b	-59.3	τNH ₂ (M1, M2)
71	284	-8.9	287	-5.5	299	-2.7	τRr (M1, M2)
72	284	-9.0	294	1.6	298	-4.0	τRr (M1, M2)
73	311	37.7	321	44.2	322	42.1	$\delta C_6 N_6$, δR , δr (M1, M2)
74	308	34.5	315	37.8	317	36.8	$\delta C_6 N_6$, δR , δr (M1, M2)
75	217	-23.2	208	-31.3	197	-31.6	τRr , $\gamma_{wagg}NH_2$ (M1, M2)
76	208	-32.7	211	-28.5	181	-47.5	τRr , τNH_2 (M1, M2)
77	145	-62.2	151	-54.2	128	22.9	$\gamma_{wagg} NH_2$, $\tau Rr (M1, M2)$
78	151	-56.4	153	-51.8	148	42.5	$\gamma_{wagg}NH_2$, τRr (M1, M2)
79	93		104		95		intermolecular mode
80	77		86		82		intermolecular mode
81	10		23		51		τRr , $\gamma C_6 N_6$ (M1, M2)
82	39		51		37		intermolecular mode
83			3				intermolecular mode
84							intermolecular mode

^aAbbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; R and r refer to the 6-membered ring and 5-membered ring, respectively; M1 = Monomer 1; M2 = Monomer 2.

^bModes excluded from the anharmonic calculation.

_

	B3LYP-D3	1	B3LYP-DCF)	Assignment ^a
Mode	anharm	Δ stacked	anharm	Δ stacked	
1	3521	-12.8	3532	-20.5	$v_{asym}NH_2$ (M2)
2	3506	-27.7	3532	-20.7	$v_{asym}NH_2$ (M1)
3	3491	9.0	3489	5.7	vN ₉ H (M2)
4	3487	4.6	3489	5.5	vN ₉ H (M1)
5	3423	-20.0	3430	-19.2	$v_{sym}NH_2$ (M2)
6	3422	-21.1	3430	-19.6	$v_{sym}NH_2$ (M1)
7	3115	3.8	3149	-0.2	νC ₈ H (M1)
8	3109	-2.6	3149	-0.5	νC ₈ H (M2)
9	3050	8.1	3080	12.3	vC_2H (M2)
10	3045	2.9	3080	12.4	vC ₂ H (M1)
11	1625	1.0	1679	1.1	δ_{sciss} NH ₂ , vC ₅ C ₆ , vC ₆ N ₆ (M1, M2)
12	1625	1.1	1673	-5.6	$\delta_{sciss}NH_2$, νC_5C_6 , νC_6N_6 (M1, M2)
13	1599	4.3	1649	8.8	$vN_{3}C_{4}, vC_{5}C_{6}(M1, M2)$
14	1595	0.5	1647	6.4	$vN_3C_4, vC_5C_6(M1, M2)$
15	1566	1.4	1587	1.1	$\delta_{sciss}NH_2$, νC_4C_5 , νC_5C_6 (M1)
16	1565	0.2	1585	-0.5	$\delta_{sciss}NH_2$, νC_4C_5 , νC_5C_6 (M2)
17	1484	2.3	1521	-0.1	$vN_7C_8, \delta C_8H (M1, M2)$
18	1482	0.2	1520	-1.0	$vN_7C_8, \delta C_8H (M1, M2)$
19	1464	1.2	1496	-1.3	$vN_1C_6, \delta C_2H, vC_2N_3, vC_6N_6 (M1, M2)$
20	1463	-0.2	1495	-2.8	$vN_1C_6, \delta C_2H, vC_2N_3, vC_6N_6$ (M1, M2)
21	1406	0.3	1452	-1.0	$vC_4C_5, vC_4N_9, \delta C_2H$ (M1, M2)
22	1406	-0.1	1452	-1.1	$vC_4C_5, vC_4N_9, \delta C_2H$ (M1, M2)
23	1381	1.3	1415	-4.1	$\delta N_9 H$, $\delta C_2 H$, $\nu C_4 N_9$, $\nu C_8 N_9 (M1, M2)$
24	1378	-1.1	1415	-4.8	$\delta N_9 H$, $\delta C_2 H$, $\nu C_4 N_9$, $\nu C_8 N_9 (M1, M2)$
25	1338	1.2	1380	-3.4	$\delta C_2 H$, $\nu C_8 N_9$, $\delta C_8 H$, $\nu C_6 N_6 (M1, M2)$
26	1336	-1.0	1377	-6.6	$\delta C_2 H$, $\nu C_8 N_9$, $\delta C_8 H$, $\nu C_6 N_6 (M1, M2)$
27	1328	0.5	1366	-3.5	$vN_1C_2, vC_5N_7, vC_4C_5$ (M2)
28	1325	-2.7	1365	-4.4	$vN_1C_2, vC_5N_7, vC_4C_5$ (M1)
29	1299	3.3	1344	-3.9	$vC_2N_3, vN_1C_2(M1)$
30	1297	1.1	1342	-5.3	vC_2N_3, vN_1C_2 (M2)
31	1244	5.7	1263	-3.5	$\delta C_8 H$, $\nu N_7 C_8$, $\delta N_9 H$ (M1, M2)
32	1242	3.6	1262	-5.2	$\delta C_8 H$, $\nu N_7 C_8$, $\delta N_9 H$ (M1, M2)
33	1227	2.2	1254	3.3	δ_{rock} NH ₂ , vC ₅ N ₇ , vC ₂ N ₃ (M1)
34	1228	3.2	1252	1.5	δ_{rock} NH ₂ , vC ₅ N ₇ , vC ₂ N ₃ (M2)
35	1125	3.2	1156	0.3	vC_4N_9 , δr , vC_6N_6 (M1, M2)
36	1120	-1.6	1153	-2.6	vC_4N_9 , δr , vC_6N_6 (M1, M2)
37	1053	-0.2	1080	-2.7	vC_8N_9 , δN_9H (M1, M2)
38	1053	-0.4	1080	-2.8	$vC_8N_9, \delta N_9H (M1, M2)$
39	1010	14.8	1011	13.4	δ_{rock} NH ₂ , vN ₁ C ₆ (M1)
40	1005	10.6	1012	14.2	δ_{rock} NH ₂ , vN ₁ C ₆ (M2)
41	941	-11.5	973	-3.3	$\gamma C_2 H (M1)$
42	947	-5.1	973	-3.4	$\gamma C_2 H (M2)$
43	931	2.4	941	-1.0	$\delta \mathbf{r}, \mathbf{v} \mathbf{C}_4 \mathbf{C}_5 (\mathbf{M1})$
44	931	1.8	941	-1.2	δr , vC ₄ C ₅ (M2)
45	886	0.9	893	-1.9	δ R (M1)

Table 15. Anharmonic vibrational frequencies (cm⁻¹) of stacked adenine dimer, computed using B3LYP-D3 and B3LYP-DCP approaches, and corresponding shifts respect to the isolated molecule (Δ stacked).

46	887	1.8	893	-1.7	δ R (M2)
47	827	14.4	863	-3.6	γC ₈ H (M2)
48	829	15.8	862	-4.7	γC ₈ H (M1)
49	799	19.4	836	-4.1	$\gamma C_8 H$, τR , τr , $\gamma C_6 N_6 (M1, M2)$
50	798	18.5	836	-3.6	$\gamma C_8 H$, τR , τr , $\gamma C_6 N_6 (M1, M2)$
51	718	3.2	733	0.5	$\nu N_3 C_4$, $\nu C_5 N_7$, $\nu C_4 N_9$ (ring breathing) (M2, M1)
52	717	2.2	732	-0.9	$\nu N_3 C_4$, $\nu C_5 N_7$, $\nu C_4 N_9$ (ring breathing) (M1, M2)
53	674	8.8	696	-3.1	$\gamma C_6 N_6$, tr, tR (M1, M2)
54	669	4.0	691	-8.0	$\gamma C_6 N_6$, τr , τR (M1, M2)
55	647	-4.0	663	-5.3	τr (M1, M2)
56	647	-3.6	663	-4.9	τr (M1, M2)
57	611	1.7	616	-1.9	δr, νC ₅ C ₆ , δR (M1, M2)
58	611	1.4	616	-2.5	δr, νC ₅ C ₆ , δR (M1, M2)
59	558	13.3	573	-4.6	$\gamma N_9 H$, $\gamma C_2 H$, τR , τr (M1, M2)
60	558	13.9	575	-3.3	$\gamma N_9 H, \gamma C_2 H, \tau R, \tau r (M1, M2)$
61	526	20.6	529	-2.5	δ R (M1)
62	528	22.7	526	-5.9	δ R (M2)
63	513	14.8	519	4.7	τNH_2 , $\gamma N_9 H$ (M2), $\gamma N_9 H$ (M1)
64	515	17.1	519	4.5	τNH_2 , $\gamma N_9 H$ (M1), $\gamma N_9 H$ (M2)
65	493	6.7	520	-3.1	$\tau NH_{2},\delta R,\delta C_{6}N_{6},\nu C_{4}N_{9},\gamma N_{9}H(M2),\gamma N_{9}H(M1)(D3),$
					$\delta_{rock} NH2,\delta R,\delta C_6 N_6,\gamma N_9 H(M1,M2)(DCP)$
66	482	-9.0	518	-5.3	$\gamma N_9 H,\tau N H_2$ (M2, M1) (D3),
					$\delta_{rock} NH2, \delta R, \delta C_6 N_6, \gamma N_9 H(M1,M2)(DCP)$
67	456	-34.6	477	-51.8	$\tau NH_2(M2),\gamma N_9 H(M1)(D3),\tau NH_2,\gamma N_9 H(M1,M2)(DCP)$
68	425	-66.4	472	-56.2	$\tau NH_{2}(M1),\gamma N_{9}H(M2)(D3),\tau NH_{2},\gamma N_{9}H(M1,M2)(DCP)$
69	296	4.4	295	-6.4	$\tau Rr\left(M1,M2\right)\left(D3\right),\gamma_{wagg}NH_{2},\tau Rr\left(M1,M2\right)\left(DCP\right)$
70	294	2.2	301	-1.0	$\tau Rr\left(M1,M2\right)\left(D3\right),\gamma_{wagg}NH_{2},\tau Rr\left(M1,M2\right)\left(DCP\right)$
71	275	-1.8	276	-4.2	$\delta C_6 N_6, \delta R, \delta r (M1) (D3), \delta C_6 N_6, \delta R, \delta r (M1, M2) (DCP)$
72	213	-26.5	275	-5.6	$\tau Rr (M1, M2) (D3), \delta C_6 N_6, \delta R, \delta r (M1, M2) (DCP)$
73	203	-35.8	214	-14.1	τRr (M1, M2)
74	420 ^b	215.2	202	-26.6	$\gamma_{wagg}NH_2$ (M1) (D3), τRr (M1, M2) (DCP)
75	290 ^b	84.8	297 ^b	191.7	$\gamma_{wagg}NH_2$ (M2) (D3), $\gamma_{wagg}NH_2$ (M1, M2) (DCP)
76	274 ^b	68.6	291 ^b	186.1	$\gamma_{wagg} NH_2 \left(M2\right) \left(D3\right), \gamma_{wagg} NH_2 \left(M1, M2\right) \left(DCP\right)$
77	164	7.2	167	14.3	$\tau Rr, \gamma C_6 N_6 (M1, M2)$
78	158	1.1	163	9.8	$\tau Rr, \gamma C_6 N_6 (M1, M2)$
79	66		68		intermolecular mode
80	54		55		intermolecular mode
81	37		39		intermolecular mode
82	27		25		intermolecular mode
83	9		14		intermolecular mode
84					intermolecular mode

^aAbbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring; rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; R and r refer to the 6-membered ring and 5-membered ring, respectively; M1 = Monomer 1; M2 = Monomer 2.

^bModes excluded from the anharmonic calculation.

_

	B3LYP-D3	3	B3LYP-DCP	•	Assignment ^a
Mode	anharm	Δ stacked	anharm	∆stacked	
1	3520	-13.5	3537	-15.3	$v_{asym}NH_2$
2	3463	-18.5	3473	-10.7	$\nu N_9 H$
3	3425	-18.0	3433	-15.9	$\nu_{sym}NH_2$
4	3117	5.2	3154	4.5	$\nu C_8 H$
5	3034	-8.1	3049	-18.6	vC_2H
6	1627	3.4	1679	1.1	$\delta_{sciss}NH_2, \nu C_5C_6, \nu C_6N_6$
7	1601	7.0	1648	7.8	vN_3C_4 , vC_5C_6
8	1562	-2.8	1584	-1.4	$\delta_{sciss}NH_2, \nu C_4C_5, \nu C_5C_6$
9	1483	1.2	1519	-1.9	$\nu N_7 C_8, \delta C_8 H$
10	1464	0.4	1496	-1.5	$\nu N_1 C_6, \delta C_2 H, \nu C_2 N_3, \nu C_6 N_6$
11	1408	1.5	1452	-1.0	$\nu C_4 C_5, \nu C_4 N_9, \delta C_2 H$
12	1379	-0.9	1421	1.7	$\delta N_9 H, \delta C_2 H, \nu C_4 N_9, \nu C_8 N_9$
13	1338	1.2	1386	2.1	$\delta C_2 H, \nu C_8 N_9, \delta C_8 H, \nu C_6 N_6$
14	1326	-1.2	1367	-2.9	$\nu N_1 C_2, \nu C_5 N_7, \nu C_4 C_5$
15	1301	4.9	1347	-0.9	vC_2N_3 , vN_1C_2
16	1242	3.1	1271	4.5	$\delta C_8 H$, $\nu N_7 C_8$, $\delta N_9 H$
17	1227	2.5	1256	5.4	$\delta_{rock} NH_2, \nu C_5 N_7, \nu C_2 N_3$
18	1122	-0.1	1156	1.0	$vC_4N_9, \delta r, vC_6N_6$
19	1062	8.4	1089	6.0	$\nu C_8 N_9, \delta N_9 H$
20	1003	8.6	1011	13.1	$\delta_{rock} NH_2, \nu N_1 C_6$
21	954	1.5	970	-6.3	$\gamma C_2 H$
22	931	2.2	944	1.5	$\delta r, \nu C_4 C_5$
23	886	0.8	897	2.5	δ R
24	805	-8.4	872	5.1	$\gamma C_8 H$
	824	11.4			$\gamma C_8 H$
25	810	30.1	841	1.5	$\gamma C_8 H,\tau R,\tau r,\gamma C_6 N_6$
26	718	3.3	734	1.8	vN_3C_4 , vC_5N_7 , vC_4N_9 (ring breathing)
27	673	7.5	694	-5.4	$\gamma C_6 N_6$, τr , τR
28	654	3.1	665	-3.2	τΓ
29	612	2.8	618	0.0	δr , vC ₅ C ₆ , δR
30	567	22.7	573	-5.0	$\gamma N_9 H, \gamma C_2 H, \tau R, \tau r$
31	523	18.3	532	0.2	δR , $\gamma N_9 H$
32	518	20.0	520	-8.1	$\tau NH_2, \gamma N_9 H$
33	522	30.5	520	5.8	$\gamma N_9 H$
34	461	-24.5	512	-11.2	$\tau NH_2, \delta R$
35	291	-0.6	307	5.6	$\tau Rr, \gamma_{wagg} NH_2$
36	268	-8.6	275	-4.8	$\delta C_6 N_6, \delta R, \delta r$
37	218	-21.2	203	-25.4	$\tau Rr, \gamma_{wagg} NH_2$
38	168	-37.2			$\gamma_{wagg} NH_2, \tau Rr$
	330 ^b	124.8	265 ^b	159.4	$\gamma_{wagg} NH_2, \tau Rr$
39	164	7.4	166	13.6	$\tau Rr, \gamma C_6 N_6$

Table 16. Anharmonic vibrational frequencies (cm⁻¹) of adenine molecule in the stacked adenine-naphthalene dimer, computed using B3LYP-D3 and B3LYP-DCP approaches, and corresponding shifts respect to the isolated molecule (Δ stacked).

^aAbbreviations: v = stretching; $\delta =$ in-plane bending; $\gamma =$ out-of-plane bending; $\tau =$ torsional; sciss = scissoring;

rock = rocking; wagg = wagging; asym = asymmetric; sym = symmetric; R and r refer to the 6-membered ring and 5-membered ring, respectively.

^bModes excluded from the anharmonic calculation.