

Figure S1. Expression of the *Mklp1* gene in mouse embryo fibroblasts (MEFs) and analysis of the anti-CHO1-pS716^{S717} antibody.

(A) RT-PCR analysis showing the expression of the *Mklp1* (332 bp) and *Cho1* (620 bp) mRNAs in mouse testis, HeLa-S3 cells, and MEFs (*Lats1*^{+/+} [wild type; WT] and *Lats1*^{$\Delta N/\Delta N$} [ΔN]; Yabuta et al., 2013). The expression level of *Gapdh* was used as a loading control. (B) A dot blot analysis confirming the quality of the anti-CHO1-pS716^{S717} polyclonal antibody (1:250 dilution). A PVDF membrane was spotted with the indicated amounts of non-phosphorylated and phosphorylated peptides. (C) Immunoblot analyses of exogenous CHO1-pS716^{S717} in HeLa-S3 cells transiently expressing 6Myc-tagged vector alone or full-length WT CHO1. The cells were asynchronous (Asy) or synchronized by treatment with nocodazole (Noc). The expression level of α -tubulin was used as a loading control. (D) Recognition of endogenous CHO1 in HeLa-S3 cells by the anti-pS716^{S717} antibody. The cells were transfected with a control (GL2) or CHO1/MKLP1-specific siRNA and synchronized by thymidine single block-and-release (10 h). Immunoblotting was performed using anti-CHO1-pS716^{S717} and anti-CHO1/MKLP1. The expression level of α -tubulin was used as a loading control.

(E) Colocalization of CHO1-pS716^{S717} with F-actin at the centrosomes during various stages of the cell cycle. HeLa-S3 cells were synchronized at each stage, stained with anti-CHO1-pS716^{S717} (green) and phalloidin-TRITC (red), and counterstained with Hoechst 33258 to detect DNA (blue). Scale bar, 10 μ m. The insets show enlarged images of the signals at the centrosome.

Figure S2. CHO1-S814^{S807} and MKLP1-pS710 are phosphorylated by Lats2.

(A) Dot blot analyses confirming the quality of the anti-CHO1-pS814^{S807} and anti-HsCyk4-pS387 polyclonal antibodies (1:250 dilution). A PVDF membrane was spotted with the indicated amounts of non-phosphorylated and phosphorylated peptides. (B) In vitro kinase assays using immunoprecipitates of 6Myc-tagged WT and KD Lats1 and Lats2, active (WT) and kinase dead (KD) forms of Aurora-A and Aurora-B as kinases, and recombinant GST-tagged full-length WT CHO1 as a substrate in the absence of [γ -³²P] ATP. Immunoblotting was performed using anti-CHO1-pS814^{S807}, anti-Myc and anti-GST. (C) Immunoblot analysis showing that the mitotic phosphorylation of CHO1-S814^{S807}/MKLP1-pS710 are independent of Aurora-B. HeLa-S3 cells were treated for 10 h with nocodazole (80 ng/ml) with or without the Aurora-B inhibitor hesperadin (Hesp. 100 nM). Lysates were detected using anti-CHO1-S814^{S807} and anti-histone H3-pS10. The intensity of the histone H3-pS10 bands represents the level of activation of Aurora-B. (D) Immunoblot analysis showing the mitotic phosphorylation of CHO1-S814^{S807} and MKLP1-S710. HeLa-S3 cells were treated with mimosine (Mim), thymidine (Thy), taxol (Tax), or nocodazole (Noc). Asynchronous cells (Asy) were used as a control. To prevent cross-reactions with non-phosphorylated CHO1-S814^{S807} and MKLP1-S710, immunoblotting was performed using an anti-CHO1-pS814^{S807} antibody together with non-phosphorylated peptides. The expression level of a-tubulin was used as a loading control. Asterisks show non-specific bands. (E) The cells were transfected with a control (GL2) or CHO1/MKLP1-specific siRNA and synchronized by Taxol (18 h). Immunoblotting was performed using anti-CHO1-pS814^{S807} and anti-CHO1/MKLP1. α-tubulin was used as a loading control. (F) In vitro Aurora-A and Aurora-B kinase assays performed using GST-tagged WT or S717A (SA) mutant MmCHO1 fragments (amino acids 692–796) in the presence of $[\gamma^{-32}P]$ ATP. SimplyBlue staining was used as a loading control. Arrows show the indicated proteins. Asterisks show non-specific bands.

Figure S3. The subcellular localizations of CHO1-pS814^{S807}/MKLP1-pS710 throughout the cell cycle and Identification of LIM-kinase 1 (LIMK1) is an association partner of CHO1.

(Å) The localizations of CHO1-pS814/MKLP1-pS710 at different phases of the cell cycle. Synchronized HeLa-S3 cells were immunostained with anti-pS814^{S807} (red), or anti-α-tubulin (green) and counterstained with Hoechst 33258 (blue). Scale bar, 10 µm. (B) Immunostaining of CHO1-pS814^{S807}/MKLP1-pS710 in parental and Lats2 knockout HeLa-S3 cells performed as described for (A).(C) Peptide competition assays in which the anti-pS814^{S807} antibody was pre-incubated with phosphorylated (+) or non-phosphorylated (-) peptides prior to immunostaining.(D) The identification of CHO1 interacting proteins. HeLa-S3 cells were transfected with 6Myc-tagged full-length CHO1-WT, MKLP1, or vector alone. The cell lysates were immunoprecipitated with anti-Myc, separated by SDS-PAGE, and stained with SimplyBlue. The four specific bands were digested, excised from the gel, and then analyzed by MALDI-TOF and LC-ESI-MS/MS. LIMK1 was identified as a candidate CHO1-interacting partner based on the presence of specific peptide fragments in band 2. The other peptides identified in band 2 are also listed. Right panel shows the image intensified by Photoshop.

Figure S4. The midbody localization of HsCyk4 and Aurora-B in HeLa-S3 cells expressing CHO1 mutants and F-actin disassembly promotes phosphorylation of CHO1 at S716^{S717}.

(A) Immunoblot analyses of isolated HeLa-S3 clones stably expressing vector alone or 6Myc-tagged CHO1-WT (wild type), -SA (S717A), -SD (S717D), -S2A (S805A/S807A), -S3A or (S717A/S805A/S807A). The expression level of each CHO1 mutant was detected using anti-Myc. The expression level of α -tubulin was used as a loading control. (B) The percentages of multinucleated cells in Lats1 wild-type (WT) and knockout (KO) mouse embryo fibroblasts (MEFs). The MEFs were stained with anti- α -tubulin and Hoechst 33258. Data are represented as the mean \pm SD of n=3 experiments (100 cells per experiment). (C) The midbody localization of HsCyk4-pS387 in HeLa-S3 cells stably expressing 6Myc-tagged vector alone or CHO1-WT, -SA, or -SD. The cells were synchronized by thymidine single block-and-release (11 h), immunostained with anti-HsCyk4-pS387 (red) and anti- α tubulin (green), and counterstained with Hoechst 33258 (blue). Scale bar, 10 μ m.

(D) The midbody localization of CHO1/MKLP1 and Aurora-B in HeLa-S3 cells stably expressing 6Myctagged vector alone or CHO1-WT, -SA, or -SD. The cells were synchronized by thymidine single blockand-release (11 h), immunostained with anti-CHO1/MKLP1 (red) and anti-Aurora-B (green), and counterstained with Hoechst 33258 (blue). Scale bar, 10 μ m. (E) Immunoblot analysis showing the level of endogenous HsCHO1-pS716^{S717} in cells treated with cytochalasin B (CytoB) (5 μ g/ml) for 24 h. Cell lysates were separated by SDS-PAGE and detected using anti-pS716^{S717}. The expression level of α -tubulin was used as a loading control. Asterisks indicate non-specific bands. (F) The effect of knockdown of Mst2 kinase on the phosphorylation of S716^{S717} of CHO1. HeLa-S3 cells were transfected with three different Mst2-siRNAs and synchronized by thymidine single block-and-release (10 h). Lysates were detected using anti-S716^{S717} and anti-Mst2. The expression level of α -tubulin was used as a loading control. Asterisks indicate non-specific bands.

Figure S5. Signal intensities of CHO1-pS716 on centrosomes in Lats1 KO and Lats2 KO cells and the centrosomal localization of Aurora-A-pT288 in HeLa-S3 cells expressing CHO1 during G2 and metaphase.

(A) The signal intensities of CHO1-pS716 on centrosomes in Lats1-KO/HeLa-S3 and Lats2-KO/HeLaS3 cells during metaphase. Data represent the mean \pm SD of n=3 independent experiments (30 cells per experiment).

(B, C) Centrosomal localization of Aurora-A-pT288 in HeLa-S3 cells stably expressing vector alone or 6Myc-tagged CHO1-WT, -SA (S717A), or -SD (S717D) during G2 phase (B) and metaphase (C). The cells were synchronized with a single thymidine block-and-release (10 h). The insets show enlarged images of signals at the centrosome. γ -tubulin is a centrosomal marker. Scale bar, 10 μ m.

Figure S6. CHO1-S716D increases the kinase activity of LIMK1 in vitro.

HeLa-S3 cells stably expressing 6Myc-tagged CHO1 (WT, SA, or SD) were transfected with 3FLAGtagged LIMK1, followed by immunoprecipitation with an anti-Flag antibody. *In vitro* kinase assays were performed using the immunoprecipitates in the presence of [γ -³²P] ATP. SimplyBlue staining was used as a loading control. The bar graph shows the signal intensity of the pLIMK1/Flag-LIMK1 ratio. Data are represented as the mean ± SD of n=3 experiments.