Supporting information

Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites

Veluska Arias, Karin Odelius, Anders Höglund and Ann-Christine Albertsson*

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm,

Sweden.

*Corresponding Author: aila@polymer.kth.se.

Tel.: +46-8-790 82 74. Fax: +46-8-20 84 77.

Particles morphology

Figure S1. Morphology of the particles used as fillers, PLLA (left) and PLA stereocomplex (right).

Materials properties after extrusion

Material	<i>M</i> _n (Da x 10⁵)ª	$oldsymbol{D}^{a}$
PLA _{high}	0.87	1.2
PLA _{high} (PLLA)	0.78	1.3
PLA _{high} (SC)	0.81	1.2
PLA _{med}	1.57	1.1
PLA _{med} (PLLA)	1.43	1.1
PLA _{med} (SC)	1.52	1.1
PLA _{low}	1.04	1.1
PLA _{low} (PLLA)	1.00	1.1
PLA _{low} (SC)	0.98	1.1

Table S1. Particulate-homocomposite molar masses and dispersity after melt-blending.

^aDetermined by SEC using $CHCl_3$ as the eluent and PS standards.

Particulate-homocomposites crystallization behavior

Figure S2. DSC thermograms of the 2nd heating scan of a) PLA_{high}, PLA_{high}(PLLA) and PLA_{high}(SC); b) PLA_{med}, PLA_{med}(PLLA) and PLA_{med}(SC) and c) PLA_{low}, PLA_{low}(PLLA) and PLA_{low}(SC).

Mechanical properties

Material	ε (%)
PLA_{high}	1,95 ± 0,3
PLA _{high} (PLLA)	3,17 ± 0,4
PLA _{high} (SC)	2,28 ± 0,3
PLA_{med}	4,5 ± 0,6
PLA _{med} (PLLA)	3,94 ± 0,6
PLA _{med} (SC)	3,15 ± 0,4
PLA _{low}	3,52 ± 0,6
PLA _{low} (PLLA)	3,33 ± 0,5
PLA _{low} (SC)	1,7 ± 0,2

Table S2. Elongation at break of the particulate-homocomposite materials.

Figure S3. Representative tensile strength against tensile strain curves of the particulate-homocomposite materials: a) PLA_{high}-based homocomposites, b) PLA_{med}-based homocomposites and c) PLA_{low}-based homocomposites.

Effect of particle loading

FigureS4. Particulate-homocomposites films at different SC particle loading: a) $PLA_{high}(SC)$ with 5 wt% particle loading and b) $PLA_{high}(SC)$ with 10 wt% particle loading.

Particles thermal properties

Figure S5. DSC thermograms of the 1st heating scan of the PLLA and PLASC particles used as fillers.