Supplementary Figure 1. UCP1 expression of WAT and BAT derived ADMSCs. Differentiated ADMSCs derived from interscapular BAT plated on TCPS or perigonadal WAT derived ADMSCs plated on the Ag73 and C-16 (25:75 molar ratio) coated plates, GAPDH normalized UCP1 mRNA expression relative to WAT (n=5).

Supplementary Figure 2. UCP1 and neutral lipid staining of *in vitro* hydrogel. IHC of differentiated ADMSCs in Ag73:C16 hydrogel with UCP1 (red) and Bodipy3922 (green).

Supplementary Figure 3. Tyrosine hydroxylase expression in BAT-MACT. Two weeks post implantation BAT-MACT were stained with DAPI (blue) and tyrosine hydroxylase specific antibodies (red).

Supplementary Figure 4. UCP1 expression of BAT-MACT compared to endogenous BAT. GAPDH normalized UCP1 mRNA expression relative to average endogenous BAT expression (n=5).

Supplementary Figure 5. WAT-MACT morphology. Two weeks post implantation WAT-MACT were stained with DAPI (blue) and endomucin specific antibodies (red) to highlight the vasculature.

Supplementary Figure 6. Thermograph of BAT-MACT implanted animal. BAT-MACT in area A compared to unaltered inguinal region in area B, 5 days post implantation at room temperature. Max temperature for area: A) 30.86°C B) 29.43°C.

Supplementary Figure 7. Serum triglyceride concentrations of control and BAT-MACT implanted animals. Serum triglycerides concentrations of animals from Fig. 5D.

Supplementary Table 1. Peptide targets for integrins and other adhesion receptors present on stem and progenitor cells identified via RT-PCR, IHC, or flow cytometry.

Acronym	Peptide Sequence	Receptor Target	Protein Source	Reference
bsp-RGD	CGGNGEPRGDTYRAY	$\alpha_V \beta_3$	Bone sialoproteina and vitronectin	[1, 2]
Р3	CGGVSWFSRHRYSPFAVS	$\alpha_6\beta_1$	Laminin al chain	[3, 4]
AG10	CGGNRWHSIYITRFG	$\alpha_6\beta_1$	Laminin α1 chain	[5] [6]
AG32	CGGTWYKIAFQRNRK	$\alpha_6\beta_1$	Laminin α1 chain	[5] [6]
AG73	CGGRKRLQVQLSIRT	Syndecan-1	Laminin α1 chain	[7] [5] [6]
C16	CGGKAFDITYVRLKF	$\alpha_V\beta_3, \alpha_5\beta_1$	Laminin y1 chain	[8] [9]

- 1. Li, Y.J., et al., *Hydrogels as artificial matrices for human embryonic stem cell self-renewal.* J Biomed Mater Res A, 2006. **79**(1): p. 1-5.
- Rezania, A. and K.E. Healy, *Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells.* Biotechnol Prog, 1999. 15(1): p. 19-32.
- 3. Emsley, J.G. and T. Hagg, *alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain.* Exp Neurol, 2003. **183**(2): p. 273-85.
- 4. Murayama, O., H. Nishida, and K. Sekiguchi, *Novel peptide ligands for integrin alpha 6 beta 1 selected from a phage display library.* J Biochem, 1996. **120**(2): p. 445-51.
- 5. Nakahara, H., et al., *A mechanism for regulation of melanoma invasion Ligation of alpha(6)beta(1) integrin by laminin G peptides.* Journal Of Biological Chemistry, 1996. **271**(44): p. 27221-27224.
- 6. Nomizu, M., et al., *Structure-activity study of a laminin alpha 1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV)*. FEBS Lett, 1995. **365**(2-3): p. 227-31.
- 7. Hoffman, M.P., et al., *Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin alpha1 chain.* J Biol Chem, 2001. **276**(25): p. 22077-85.
- 8. Ponce, M.L., M. Nomizu, and H.K. Kleinman, *An angiogenic laminin site and its antagonist bind through the alpha(v)beta3 and alpha5beta1 integrins.* Faseb j, 2001. **15**(8): p. 1389-97.
- 9. Kuratomi, Y., et al., *Laminin gamma 1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16-F10 mouse melanoma cells.* Br J Cancer, 2002. **86**(7): p. 1169-73.