
Supplementary Methods 

Graph Metrics 

Degree 

Perhaps the most basic and broadly cited graph metric is the ‘degree’, which is simply 

the number of neighbours connected to a given node, which for the i
th

 node can be 

written as: 

𝐷𝑖 =  ∑ 𝐶𝑖𝑗

𝑗

 

where 𝐶𝑖𝑗 represents the connection status between nodes i and j. 𝐶𝑖𝑗 = 1 when there 

exists a connection and 𝐶𝑖𝑗 = 0 when there is no connection (Sporns, 2003; Göttlich et 

al., 2013; Jan et al., 2013). This measure is only applicable to binary graphs, as only 

the presence or absence of a connection is taken into consideration, and any weight 

information is discarded. 

 

 

 

With reference to the diagram above, the number within the nodes denotes the degree 

of the node, i.e. the number of other nodes to which it is connected. 

 

 



Strength 

 

The ‘strength’ is closely related to the degree, in that it also counts the number of 

neighbours of a given node, but with the weightings (here mean FA values) of the 

connections taken into account (Rubinov and Sporns, 2010; Hwang et al., 2012; Goñi 

et al., 2013). The strength of the i
th

 node is defined as the sum of the weights of all 

edges incident upon it. 

 

𝑆𝑖 =  ∑ 𝑊𝑖𝑗

𝑗

 

 

where 𝑊𝑖𝑗 is the weight of the edge connecting nodes i and j.  

 

 

 

 

With reference to the diagram above, the numbers within the nodes represent their 

strength, as determined by the thickness of their inbound edges. 

 

 

 



Node coreness 

If we consider an iterative process whereby nodes with successively higher degree are 

stripped from the network, we arrive at a sub-network with nodes of minimum degree 

k – this is known as the k
th

 degree core. The ‘node coreness’ of a given node is equal 

to k if it belongs to the k
th

 degree core, but not the (k+1)
th

 degree core (Hagmann et 

al., 2008).  

 

 

With reference to the diagram above, the first step removes all nodes of degree 1. In 

the second step all nodes of degree 2 are removed, leaving a network with minimum 

node degree 3. The coreness of the 4 external nodes (in red) is equal to 3 as they 

belong to the 3
rd

 degree core, but not the 4
th

 degree core.  

 

Rich club coefficient 

The ‘rich club coefficient’ also splits a network into nodes of equal degree and is 

defined as the ratio of the number of connections between nodes of degree k to the 

number of all possible connections between nodes of degree k (Colizza et al., 2006; 

van den Heuvel and Sporns, 2011; Grayson et al., 2014).  

Assortativity coefficient 

The ‘assortativity coefficient’ builds upon the degree metric, in that it describes the 

correlation between the degrees of pairs of connected nodes (Newman, 2002; Deuker 



et al., 2009; Foster et al., 2010). The assortativity coefficient is a measure of 

correlation between the degrees of nodes on either end of a hyperedge. A hyperedge is 

a connection that exists in a hypergraph, in which a single edge can connect an 

arbitrary number of vertices. This measure is an indication of the extent to which a 

given node connects to other nodes with a similar degree. Positive values of 

assortativity are assigned to nodes that connect to nodes of similar degree, whilst 

negative values are assigned to nodes to connect to nodes of dissimilar degree. The 

assortativity coefficient r spans the range −1 ≤ 𝑟 ≤ 1. 

 

 

 

With reference to the diagram above, the assortativity coefficient of the red node in 

the first diagram is positive as it connects to nodes with the same degree as itself, 

whereas the assortativity coefficient for the red node in the second diagram is 

negative as it connects to nodes with dissimilar degree. Note that the connections 

between the pairs of nodes being compared are not counted in these calculations. 

 

Characteristic path length 

Path length is a type of distance used in network analysis, which describes the number 

of ‘steps’ required to link a pair of nodes (Sporns, 2003). For instance, a path length 

value of 3 between nodes A and B means that there are 3 edges separating them.  



 

 

 

 

 

With reference to the diagram above, it may be seen that there is a path length of 3 

separating nodes A and B.  

 

There is often more than one possible path between pairs of nodes and it is sometimes 

of interest to calculate the shortest possible path length – i.e. the one that minimizes 

the number of edges.  

 

 

 

With reference to the diagram above, it may be seen that the shortest path length 

between nodes A and B is represented by the 2 red edges.  

 

The characteristic path length is the average of all the shortest path lengths between 

all pairs of nodes in a graph (Sporns, 2003; Dennis et al., 2011; Liang et al., 2013). In 



order to obtain an expression for the characteristic path length, one first sums the 

shortest distances (D) between all pairs of nodes in the network to obtain the total 

path length CT.  

𝐶𝑇 =  ∑ 𝐷(𝑖, 𝑗)

𝑖,𝑗

 

In order to arrive at the characteristic path length one needs to calculate the average of 

CT. One node can make (n-1) connections – where n is the number of nodes in the 

network. The reason it makes (n-1) connections is that it connects to all nodes except 

itself. This is repeated n times in order to account for every pair selection. Therefore, 

the characteristic path length becomes: 

𝐶 =
𝐶𝑇

𝑛(𝑛 − 1)
 

 

Global & local efficiency 

The ‘global efficiency’ is a scalar measure of information flow and is defined as the 

inverse of all shortest path lengths in a given network (Latora and Marchiori, 2001; 

Chen et al., 2013; Crone et al., 2014).  The ‘local efficiency’ is a closely related 

metric that is calculated at the level of individual nodes, rather than at the level of the 

entire network, as with the global efficiency (Onnela et al., 2005; Klados et al., 2013; 

Rzucidlo et al., 2013).  

Eccentricity 

The eccentricity is the maximum path length between a given node and any other 

node in the network (Sporns, 2003).  

 



 

 

With reference to the diagram above, it may be seen that the longest path length 

between nodes A and B is 4. This is defined as the eccentricity: 

𝐸(𝑖, 𝑗) = max (𝐷(𝑖, 𝑗)) 

 

Diameter & Radius 

The ‘diameter’ and ‘radius’ are graph-level metrics that are defined as the maximum 

and minimum values of the eccentricity across all nodes in a given network, 

respectively (Sporns, 2003).  

𝐷 = max (𝐸) 

𝑅 = min (𝐸) 

Betweenness centrality 

The ‘betweenness centrality’ is a metric that depends upon the deconstruction of a 

graph into path lengths and is defined as the ratio of the number of shortest paths 

passing through a given node to the total number of shortest paths between all other 

nodes in the network (Brandes, 2001; Fadlallah et al., 2013; van Oort et al., 2013).  

 



 

 

For instance, with regard to the diagram above, it can be seen that the central node 

participates in the shortest path lengths between the pairs of green, blue, yellow and 

red nodes. Therefore, the middle node is assigned a high value of betweenness 

centrality. The betweenness centrality of the i
th

 node can calculated by summing the 

shortest paths between all other pairs of nodes in the network: 

𝐵𝑖 =  ∑
𝐷𝑖(𝑗, 𝑘)

𝐷(𝑗, 𝑘)
𝑗,𝑘

           𝑖 ≠ 𝑗 ≠ 𝑘 

Where 𝐷𝑖(𝑗, 𝑘) is the number of shortest paths between the j
th

 and k
th

 node that pass 

through the i
th

 node, and 𝐷(𝑗, 𝑘) is the total number of shortest paths between the j
th

 

and k
th

 node.  

 

The betweenness centrality may be normalized in order to compare networks of 

different sizes. This is achieved by dividing the equation above by the number of pairs 

of nodes excluding the node for which the betweenness centrality is being calculated. 

For the i
th

 node, a total of (N-1) nodes are able to form a pair with the j
th

 node, as the 

i
th

 node is excluded. Similarly, a total of (N-2) nodes are able to form a pair with the 

k
th

 node, as the i
th

 and j
th

 node are excluded. As we are dealing with undirected graphs 

in the case of fractional anisotropy, inbound and outbound links count as just one link 

and so one divides by 2 in order to account for this bi-directionality. Therefore, the 

normalized betweenness centrality becomes: 

 



𝐵𝑖
𝑁𝑂𝑅𝑀 =

2

(𝑁 − 1)(𝑁 − 2)
 ∑

𝐷𝑖(𝑗, 𝑘)

𝐷(𝑗, 𝑘)
𝑗,𝑘

           𝑖 ≠ 𝑗 ≠ 𝑘 

 

Eigenvector centrality 

A graph metric that has gained considerable attention in recent years, with the rise of 

the page-rank algorithms of internet search engines, is ‘eigenvector centrality’. This 

metric is self-referential, in that it assigns a high level of importance to a node if it is 

connected to other nodes that are themselves important (Binnewijzend et al., 2013; 

Geerligs et al., 2013; Liang et al., 2013). The eigenvector centrality of the i
th

 node in 

the network may be calculated through the either a binary or weighted adjacency 

matrix. In the case of the weighted adjacency matrix a further dimension in the form 

of strength of connections between nodes of high centrality contribute to 

classification. The eigenvector centrality of the i
th

 node is equal to the sum of the 

eigenvector centralities of all of its neighbours: 

𝑒𝑖 =  
1

𝜆
∑ 𝑎𝑖𝑗𝑒𝑗

𝑗

 

where 𝑎𝑖𝑗 is the connection status between the i
th

 and j
th

 node and 𝜆 is a constant of 

proportionality. This may be rewritten in the form of the eigenvector equation: 

𝐴𝑒 = 𝜆𝑒 

There are multiple values of lambda for which a solution to this eigenvector equation 

exists. However, we may impose the restriction that lambda must be positive, as a 

negative connection status is not a plausible scenario. The Perron-Frobenius theorem 

tells us that in the case of a square matrix with strictly positive components, as is the 

case here, there is a unique solution to the eigenvector equation in the form of the 

largest eigenvalue. Therefore, the i
th

 component of the eigenvector related to the 



largest eigenvalue gives the eigenvector centrality of the i
th

 node.  

 

Edge neighbourhood overlap, matching index and node pair degree 

There is a subset of graph metrics that are designed to quantify similarities in 

connection patterns within a network, which have also found utility in various 

technological and social sciences settings. For instance, the ‘edge neighbourhood 

overlap’ describes the extent to which the immediate neighbours of pairs of nodes 

overlap (Easley and Kleinberg, 2010). The neighbourhood of an edge consists of the 

nodes that are removed by exactly one edge from the two adjoining nodes.   

 

 

 

With reference to the diagram above, we are interested in calculating the edge 

neighbourhood overlap of the red edge. The blue circles represent the neighbourhood 

of the left red node. Similarly, the green circles represent the neighbourhood of the 

right red node. We are interested in all green and blue nodes that are neighbours of 

one another – as represented by the yellow edges in the diagram. The edge 

neighbourhood overlap is defined as the number of nodes on either end of these 

yellow edges between neighbours of neighbourhoods, divided by the total number of 

nodes in both neighbourhoods. Therefore, for the network above the edge 



neighbourhood overlap is: 

𝑁𝑜𝑑𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑦𝑒𝑙𝑙𝑜𝑤 𝑒𝑑𝑔𝑒𝑠

(𝐵𝑙𝑢𝑒 𝑛𝑜𝑑𝑒𝑠 + 𝐺𝑟𝑒𝑒𝑛 𝑁𝑜𝑑𝑒𝑠)
=  

(2 + 2)

(4 + 5)
= 4/9 

 

In the case of the matching index one is interested in the extent to which two nodes 

share neighbours (Sporns, 2003). However, in the case of the edge neighbourhood 

overlap one is interested in the extent to which the neighbours of the two nodes joined 

by the edge in question are neighbours of one another. The ‘node pair degree’ is the 

degree of each pair of nodes considered in the calculation of the edge neighbourhood 

overlap metric (Sporns, 2003).  

Optimal community structure 

Certain graph metrics depend on the estimation of the ‘optimal community structure’ 

- a segregation of a network into densely inter-connected regions (Newman, 2006). A 

network may divided into modules in which nodes interact more strongly with one 

another than with those in the rest of the network. These sub-networks may be found 

by calculating the optimal community structure. The latter produces modules in which 

the number of inter-modular connections are minimized and the within-modular 

connections are maximized.  

 

 



 

With reference to the diagram above, it may be seen that there are 5 clusters of highly 

interconnected nodes, with sparse connections between each other. The optimal 

community structure for this configuration would be split into 5 modules as shown in 

the diagram above.   

 

Participation coefficient 

 

The participation coefficient is a measure of how deeply an individual node is 

embedded within its local module, as defined by the optimal community 

structure  (Guimera and Amaral, 2005). It is calculated as the ratio of the number of 

connections node A has within its module to the number of connections is has within 

the entire network.   

 

 

 

With reference to the diagram above, the participation coefficient of the red node in 

the left network is higher, as it has more links within its local module relative to its 

total number of links, as compared with the red node in the right network. The ratio R 

of the i
th

 node’s links within module m to its total number of links can be written as 

follows: 



𝐷𝑖
𝑚

𝐷𝑖
 

 

where 𝐷𝑖 is the degree of node i. We then sum the ratio above over all modules m: 

𝑅𝑖 = ∑
𝐷𝑖

𝑚

𝐷𝑖
𝑚

 

We then normalize the ratio of within-module links to total links for node i across all 

modules and define the result as the participation coefficient P of node i: 

𝑃𝑖 = 1 − ∑ (
𝐷𝑖

𝑚

𝐷𝑖
)

2

𝑚

 

It can be seen from the above equation that the participation coefficient ranges from 

0 ≤ 𝑃 < 1, where P=0 denotes the case where the i
th

 node links only to nodes within 

its own module, i.e. 𝐷𝑖
𝑚 = 𝐷𝑖. On the other hand, P approaches a value of 1 when the 

i
th

 node connects as strongly with its local module as with all other modules, i.e. 

𝐷𝑖
𝑚 ≪ 𝐷𝑖 

 

Diversity coefficient 

There is an inherent uncertainty in assigning a given node to its local community, as 

quantified by the ‘diversity coefficient’, a quantity closely related to Shannon’s 

definition of entropy in information theory (Shannon, 1948; Rubinov and Sporns, 

2010). We can define the uncertainty in assigning the i
th

 node to a module as: 

𝐻(𝑖) = 𝐸[𝐼(𝑖)] 

where E is the expected value operator and I is the information content. The expected 

value is the value one would obtain if one were to assign the node in question to a 

module, based on the optimal community structure algorithm, infinitely many times 



and take the average of the values obtained. The information content is the ‘quantity’ 

of information associated with the outcome that a node has been assigned to a 

module. The information content of the i
th

 node being assigned to a particular module 

is inversely proportional to the probability of this event occurring. In other words, 

when there is a high probability that a certain node will be placed within a particular 

module, then the information content associated with this event having taken place is 

low.  

 

Information content must be both positive and additive in nature. This means that the 

information content associated with both the i
th

 and j
th

 node being assigned to 

particular modules is equal to the sum of the information content associated with the 

i
th

 node being assigned to a particular module, plus the information content associated 

with the j
th

 node being assigned to a particular module: 

𝐼(𝑖 ∩ 𝑗) = 𝐼(𝑖) + 𝐼(𝑗) 

where 𝑖 ∩ 𝑗 is the intersection of the two independent events of nodes i and j being 

assigned to particular modules. This means that the information content associated 

with the outcome that the i
th  

node was assigned to a particular module can be written: 

𝐼(𝑖) = 𝑙𝑜𝑔 (
1

𝑝(𝑖)
) = −log (𝑝(𝑖)) 

and combining this with the formula above, the entropy can be written: 

𝐻(𝑖) = 𝐸[−log (𝑝(𝑖))] 

It may be seen that the entropy H tends to infinity when the probability of the i
th

 node 

being assigned to a particular module tends to 0. Similarly, the entropy is equal to 

zero when the probability of the i
th

 node being assigned to a particular module is 

equal to 1. In other words, the more equally distributed the probability distribution of 

a given node being assigned to modules in the network, the greater the uncertainty in 



which module will be selected as its own.   

 

As we are unable to run the optimal community structure algorithm infinitely many 

times in order to measure an expected value, we must deal with summations over 

finite sample sizes. In this case, the expected value becomes the probability of the i
th

 

node being assigned to a particular module: 

𝐸(𝑖) → ∑ 𝑝(𝑖)

𝑖

 

and the equation for the uncertainty (or diversity coefficient) in assigning the i
th

 node 

to a particular module can be rewritten: 

𝐻(𝑖) = − ∑ 𝑝(𝑖)log [𝑝(𝑖)]

𝑖

 

 

Clustering coefficient 

The extent to which nodes tend to group together is quantified by metrics describing 

‘clustering’. The ‘clustering coefficient’ is defined as the number of ‘triangles’ on the 

node level (Watts and Strogatz, 1998; Onnela et al., 2005; Dubbelink et al., 2013). 

For a network consisting of N nodes, the i
th

 node Ni can have a maximum of (N-1) 

inbound connections, as it can connect to every node in the network except itself. 

Summing over the network, each of the N nodes can make a maximum of (N-1) 

connections, giving a total of N(N-1) connections. For a node in an undirected 

network, an inbound and outbound link to another node counts as only one link, 

which means it can only make 
(𝑁−1)

2
 undirected connections. Therefore, for the entire 

undirected network, the maximum number of connections are 
𝑁(𝑁−1)

2
. The local 

clustering coefficient is the ratio of connections that actually exist, to the total number 



of possible connections: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2𝐶

𝑁(𝑁 − 1)
 

 

where C is number of present connections.  

 

Transitivity 

The ‘transitivity’ is a scalar descriptor of the clustering coefficient, being defined at 

the network level, rather than at the individual node level (Onnela et al., 2005; 

Humphries and Gurney, 2008; Anderson and Cohen, 2013). The transitivity is based 

on triplet and triangle configurations. Triplets are sub-categorized into open and 

closed triplets. An open triplet is a set of 3 nodes, only 2 of which are connected. A 

closed triplet is a set of 3 nodes, all of which are connected.  

 

For example, in the diagram above, the open triplets are as follows: C-B-E, E-B-D, 

A-B-D. The closed triplets are: A-B-C, B-C-A, C-A-B. The latter collection of 3 

closed triplets are collectively known as a triangle. From this we can see that: 

𝑁𝑜. 𝑜𝑓 𝐶𝑙𝑜𝑠𝑒𝑑 𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 =  3 × No. of Triangles 

The number of triangles in the network can be calculated by summing over the 

connection statuses between all pairs of nodes: 



𝑁𝑜. 𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 =  
1

2
∑ 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘

𝑖,𝑗,𝑘

 

where aij is the connection status between the i
th

 and j
th

 node. The connection status 

equals 1 if there is a connection and zero if there is no connection. Note that the factor 

of ½ is due to the fact that the network is undirected in the case of fractional 

anisotropy and that therefore an inbound and outbound link count as only one 

connection. Transitivity is defined as the ratio of the number of closed triplets to the 

number of both closed and open triplets.  

 

Minimising overfitting via the elastic net 

Overfitting is a common problem in statistical analysis that occurs when a model 

describes noise rather than meaningful signals in the data. An overfitted model is 

therefore unable to make accurate predictions, often due to an excess amount of 

predictors (e.g. graph metrics) relative to observations (e.g. subjects). Various 

techniques have been developed in order to deal with overfitting in predictive models. 

These techniques attempt to create efficient models by minimizing the effects of 

redundant predictors in the models (Hastie et al., 2009).  

One recent such technique is known as the elastic net, and is a combination of two 

previous techniques, known as the least absolute shrinkage and selection operator 

(LASSO) and ridge regression (Tibshirani, 1996). If a given dataset contains multiple 

highly correlated predictors (as is the case in our study) ridge regression will decrease 

the effect of groups of these simultaneously, but will not drive them all the way to 

zero. This is not useful for our study, as we wish to eliminate redundant graph metrics 

entirely from the models, in order to be left with only the most valuable. On the other 



hand, the LASSO will only eliminate a single redundant predictor at a time. This is 

also not ideal for our purposes, as the single predictor being removed may be highly 

correlated with many others, which the LASSO would however retain in the model. 

This is where the elastic net can be highly advantageous, as it is able to penalize 

groups of highly correlated predictors simultaneously, whilst eliminating them 

entirely from the model. Therefore, the elastic net takes advantage of properties of 

both the LASSO and ridge regression to create a hybrid model that is highly suitable 

for a study such as ours (Zou and Hastie, 2005). 
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