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S1 Deriving step-to-step transition work for changing speeds

The mechanical work done to redirect the velocity of the center of mass from downward to upward when
transitioning from one step to the next is thought to be a major determinant of the metabolic cost of walking
at a constant speed [1, 2, 3].

Mathematical expressions for this step-to-step transition cost have previously been derived for such steady state
walking, with the simplifying assumption that humans walk with an inverted pendulum gait [4, 1, 2, 3]. When
a person walks at continuously varying speeds, as in our experiments, the step-to-step transition will include
a change in both the magnitude and direction of the COM velocity. Here, we derive an expression for the
work done in the step-to-step transition when walking at changing (non-constant) speeds, thereby generalizing
previous work [4, 1, 2, 3]. We allow that the length of the leg to change during the step-to-step transition
(unequal Opefore and Gagier) while having constant leg length during the stance phase.

Push-off before heel-strike. Figure S1 describes the transition from one inverted pendulum to the next
using push-off and heel-strike impulses; panels a-c describe situations in which the push-off happens entirely
before heel-strike, which we consider first. In particular, Figure Sla-b shows a finite reduction in speed being
accomplished during the step-to-step transition, with push-off before heel-strike. We focus on Figure S1b in the
following derivation. Here, vector OA with magnitude OA = Vj,etore and making angle Oy,e0re with horizontal, is
the body velocity just before push-off at the end of one inverted pendulum phase. Vector OC, with magnitude
OC = Viger and making angle O.¢e;, is the body velocity just after heel-strike at the beginning of the next
inverted pendulum phase.

—
A push-off impulse is applied along the trailing leg to change velocity OA to @, along ﬁ Then, a heel-strike
impulse is applied along the leading leg to change velocity OB to OC, along BC. The push-off positive work
Whos is the kinetic energy change from OA and OB given by %mOB2 — %mOA2 and the heel-strike negative

work is the kinetic energy change from @ to O% given by Wyee given by %mOC2 — %mOBZ, which simplify to:
1 1
Wpos = Zm (AB)? and Wyeg = 5m (BC)? respectively. (1)

As opposed to the steady walking situation [4, 1, 2, 3], when changing speeds, the step-to-step push-off positive
work Wpos and the step-to-step heel-strike negative work Wy, will be unequal.

First, we note that angle that in triangle EBD, ZDEB = 7/2 — latter, £BDE = 7/2 — Opefore, and ZEBD =
Oatter + Obetore- We use the geometric relations that AB = AD-BD, BC = EB+CE, AD = OA tan fyetore, CE =



a) Hodograph for unsteady walking -- speed decrease (push-oft before heel-strike)

velocity
just aftgr Velocity change due to
heel-strllﬁe heel-strike impulse

/ along leading leg

Velocity change due to
¢ 7™~ push-off impulse

Yelocity along trailing leg
just before

push-off

d) Step to step transition with heel-strike before push-off

Slowing down

Figure S1: Step-to-step transition to change speed. a) The walking motion is assumed to be inverted pendulum-
like with the transitions from one inverted pendulum step to the next accomplished using push-off and heel-strike
impulses. Overlaid is the ‘hodograph’ (a depiction of velocity changes) during the step-to-step transition, when push-off
happens entirely before heel-strike. b) Details of the velocity changes during step-to-step transition, with push-off before
heel-strike and slowing down. c¢) Analogous to panel-c, except the walking speeds up during the transition. d) Velocity
changes and impulses when the heel-strike precedes push-off entirely.
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with OA = Viefore and OC = Vger. We obtain exactly the same expressions for speeding up during step-to-step
transition as shown in figure Slc (though the figure looks superficially different, a couple of negative signs cancel,
thereby giving the same answers). Note that the main qualitative difference between panels b and ¢ of figure
S1 is that the velocity O? is above or below the horizontal.

1
VVneg = §m |:Vaftertan eafter +

An implicit assumption in the above derivation is that the push-off and heel-strike impulses do not require
tensional leg forces (the leg cannot pull on the ground) and are in the directions shown. This requirement is
satisfied when the ratio of the two speeds obey the following condition:

Vafter 1
€05 (Batier + Bbofore) < < .
e eore Vbefore Ccos (eafter + ebefore)

When Vagter / Voefore = €08 (Batter + Obefore ), the necessary push-off impulse becomes zero and when Viefore/ Vagter =
€08 (Batter + Obefore), the necessary heel-strike impulse becomes zero.

Heel-strike before push-off. When the heel-strike impulse precedes the push-off impulse, the negative work
Wheg by the heel-strike and the positive work by the push-off W, are given by the respective kinetic energy
changes:

1 1
Wneg = §m (OA2 — OGZ) and Wpos = §m (002 - OGQ)’ (5)

where OA = Vbefores 0oC = Vatter, OG2 = OQ2 + QG27 OQ = OA cos (eafter + ebefore)a angle ZQGC = Oafter +
Opefore; QG = CG cos (Batter + Opefore), and CG = AB in figure S1b. i.e.,
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using the derivation for push-off before heel-strike; the final expression is easily obtained by substituting these
relations into equation 5. As has been shown before for steady state walking [4, 2], we find that a transition
with heel-strike before push-off requires more metabolic cost than push-off before heel-strike even when changing
speeds with the simplifying assumption that Opetore = Baster-

S2 Optimal multi-step inverted pendulum gaits satisfying experi-
mental protocol

We use a metabolic cost that is a sum of two terms: (1) the step-to-step transition cost and (2) a swing cost.

Step-to-step transition cost. The step-to-step transition cost Egog is a weighted sum of the push-off work
Whpos and heel-strike work Wiee, summed over all steps, and scaled by the approximate efficiencies of positive
and negative work respectively:

Egs = Z n;olswpos + n;e%aneg

steps



using the equations 3 and 4 for the work expressions.

Swing cost. The step-to-step transition cost does not account for the work required to swing the legs. We use
a simple model of the metabolic cost required to swing the legs forward [5] equal to

3
Eswing = /'LDStride/Tstep

where Tyep is the step duration, Dggide is the distance travelled by the swing foot during the step (distance
between previous and successive foot contact points), and the proportionality constant p = 0.06 when all other
quantities are non-dimensional, chosen so as to best fit steady walking metabolic costs [5].

Representing a multi-step inverted pendulum walking motion. Each step of the inverted pendulum
walking motion was represented using five variables: the initial leg angle 6y, the initial (post-heel-strike) angular
velocity 90, step duration Ticp, the constant leg-length over the step fics, and the foot-ground contact position
in the forward direction Zcontact. Nonlinear equality constraints make sure that the body position at the end of
one step is equal to that at the beginning of the next step.

Numerical optimization. We used numerical optimization to determine the multi-step walking motion that
satisfies the oscillating-speed experimental protocol and minimizes the model metabolic cost as described above.
The biped model alternates between a higher speed vavg + L/Tiwa and a lower speed vayg — L/Thek, each lasting
a few steps, so that the net average speed is vavg, and the forward and backward movement in lab frame have
periods equal to Ttywq and Ti,cx. The number of steps for the forward and backward movements are chosen based
on the number of steady walking steps in the durations Ttyq and Tk Other constraints included an upper
bound on the leg length (< £,.x) and a periodicity constraint on the body height over one period of back and
forth walking. The optimization problem was solved in MATLAB using the optimization software SNOPT, which
employs the sequential quadratic programming technique [6]. At each average speed, we also computed the
optimal constant-speed inverted pendulum walking gait (repeating calculations in [3, 7]), so as to subtract from
the optimal oscillating-speed walking cost.

Leg force cost. We repeated the calculations above with a cost for leg force, proportional to the integral of
the leg force, with a proportionality constant as in [?]. We found that this leg force cost did not change our
overall predictions for the difference between oscillating-speed and constant-speed metabolic costs, as both these
costs increase by the almost same amount due to the leg force cost. This result can be explained intuitively as
follows: because the legs make relatively small angle with the vertical, as explained in [7], the average leg force
is approximately equal to the average vertical force, which has to be equal to the total body weight for periodic
motion — be it constant-speed walking or oscillating-speed walking.

S3 Daily energy budget for starting and stopping

Subjects in [8] performed a majority of the walking over a day in short bouts; they walked in 43914 bouts
and took a total of 1717730 steps. Assuming a typical step length of 0.6 m [9], the subjects walked a total
distance of 1030638 m. Assuming the subjects walked the whole distance at a constant speed of 1.4 m/s, we
can predict a total constant-speed energy expenditure to be 2262600 J, based on a parabolic relationship given
by Feteady = a + bv? with a = 2.22 W/kg and b = 1.15 W/kg/(ms~")? [10]. But, such a cost would ignore
the cost of accelerating from and to rest at the start and the end of the bout. We can approximate this daily
unsteady cost for the 43914 bouts to be 137380 J by extrapolating our results from the kinetic energy-based
model with the unsteady cost for one bout given by, Axe (o5 + Mg )v°/2, where Age = 0.67. The ratio of the
cost of changing speed to cost of walking is thus found to be 0.06, in other words, the unsteady cost of walking
per day is 6% of the steady cost on average. Using the 95% C.I. for . gives us 4-8% as reported in the main
manuscript. This approximate calculation shows that the cost of changing speeds is a significant fraction of the
energy humans consume in daily walking.



S4 Comparison with a previous study

Our oscillating speed protocols had speed fluctuations between +0.13 and +0.27 m/s. As noted in the main
manuscript, one previous article [11] attempted to measure the cost of changing speeds, with greater speed
fluctuations (£0.15 to £0.56 m/s) and higher kinetic energy fluctuations per unit time than our study. The rate
of kinetic energy fluctuations for both experiments can be compared by comparing vAv /T, for a fluctuation
between speeds v — Av and v+ Av in T seconds. In [11] vAv/T ranges between to 0.0226 and 0.127 m?s~3 and
in our protocol, vAv/T ranges between 0.026 and 0.1108 m2s~2. Thus, the kinetic energy fluctuation rates were
similar in the two studies. Nevertheless, the study [11] found significant increase only for their highest speed
fluctuation but not lower. As noted in the main manuscript, this study [11] required walking on oscillating-speed
treadmill belts or controlling step durations in overground walking (derived from oscillating-speed treadmill).
An oscillating-speed treadmill, being a non-inertial reference frame, can perform mechanical work on the subject,
and is not mechanically equivalent to oscillating-speed walking overground. Further, controlling step durations
[11] will produce incorrect speed fluctuations that do not obey the speed-step-duration relation for directly
controlling walking speed, as established by Bertram and Ruina [12] in the case of steady walking.
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