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In this supplementary material we first compare the performance of the visibility multiplex net-
work method with results obtained according to standard symbolization approaches. We then focus
on diffusively coupled chaotic maps and assess the performance of both methods (the currently
proposed visibility multiplex approach, and the standard approach based on series symbolization)
in the task of retrieving and accurately describing several well-known dynamical properties of these
systems, namely (i) the transition between different dynamical phases, (ii) the increase of synchroni-
sation as a function of the coupling constant, and (iii) the accurate location of the onset of multiband
chaotic attractors. Whereas the visibility approach correctly captures numerically all these proper-
ties, the approach based on symbolisation is only successful for a narrow set of the symbolisation
parameters (number of symbols, phase space partition). We conclude that, within this study, the
visibility multiplex approach is at least as accurate as the optimal symbolisation criterion, although
the former is parameter free and therefore is more efficient in practice. In a second part, we explore
the performance of alternative graph-theoretical measures, such as the average edge overlap, as
scalar order parameters. In a third part, we explore how the proposed methodology is able to detect
the onset of full synchronisation in globally coupled chaotic maps (GCM), these being a mean-field
version of diffusively coupled maps where complete synchronisation is possible. Finally, we provide
additional details on the multiplex analysis of multivariate financial series. In particular, we provide
a detailed analysis on how a direct analysis of mutual information in a symbolised time series fails
to capture differences and classify financial years in terms of their stability.

PACS numbers: 89.75.Hc, 05.45.Tp, 89.75.Fb, 05.45.Ra

I. SYMBOLISATION: STANDARD PRACTICE, POSSIBLE PITFALLS

The standard approach to numerically study coupled map lattices (CMLs) (and more generally, trajectories of any
dynamical system, irrespective of its dimension) is to preprocess the multivariate time series generated by an orbit in
Rd through a so called symbolization

{x(t)} 7−→ {S(t)},

where x ∈ Rd and S ∈ {s1, s2, ..., sp}d. Once the original (continuous state) series {x(t)} is symbolized into a
(discrete state) sequence of symbols {S(t)}, several measures such as the ones involving frequency histograms of
finite size samples (as unbiased estimators of probability densities) such as complexity or information [1, 5] measures
can be computed and used to analyse the system. A large majority of the methods that analyse empirical time series
require such preprocessing, although it is fair to say that this is not always clarified or explicitly stated.
However, such preprocessing is far from trivial, in the sense that results usually depend on such ad hoc procedure.
First, how many symbols p should we define? Note that standard option, widely used in the field of symbolic dynam-
ics, is to makes use of two symbols (p = 2), where s1 ≡ L and s2 ≡ R (alternatively and without loss of generality,
s1 ≡ 1 and s2 ≡ 2). In general, each symbol indeed corresponds to the label of a different, non-overlapping cell ci,
such that the set C = ∪pi=1ci is a partition or tile of the phase space under study. For instance, for p = 2 the function
f : [a, b]→ [a, b] is usually symbolized according to a homogeneous partition: c1 = [a, b/2), c2 = [b/2, b]. Now, again,
is this is best choice for the definition of cells? The response is also not unique, and as a matter of fact, each dynamical
system will typically require a different symbolisation and partition. For instance, suppose that the distribution
of phase space visits of a given map is not uniform but it is peaked around some neighbourhood. Intuitively, one
would need to refine the partition in that neighbourhood, to capture fine-grained details which would otherwise be
lost. These kind of situations inevitably require a full exploration of the map’s phase space prior to any symbolization.

More dramatically, note that the dynamics induced by the symbolization process can in general be very different
under different phase space partitions and symbolisations. Concretely, only for so called generating partitions the
dynamics after symbolization remain equivalent, although which are the generating partitions is a nontrivial question
that lacks a general solution. As a toy example, let us consider the dynamics of a logistic map f(x) = rx(1 − x)
in [0, 1], where standard symbolic dynamics uses p = 2. For r = 3.6 slightly below the first Misiurewicz point,
the map is chaotic, but the chaotic attractor is splitted into two disjoint sets. Orbits in this case densely fill
the attractor, although they make ’jumps’ between each chaotic band in a periodic manner. Therefore, if we
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FIG. 1: The first panel is a time series extracted from the logistic map f(x) = rx(1−x) for r = 3.6, where the system is chaotic
and the attractor is made of two disjoint bands. A zoom of the orbit is presented in the right panel. After symbolisation with
p = 2 symbols (s1 ≡ 1, s2 ≡ 2) and asymmetric partition [0, 1] = [0, 0.7) ∪ [0.7, 1], the induced orbit is periodic of period 2
(bottom panel).

were to partition the phase space in this case as [0, 1] = [0, 0.7) ∪ [0.7, 1] (with cells c1 = [0, 0.7), c2 = [0.7, 1])
the induced dynamics would become totally periodic, and every trace of the chaotic dynamics would be lost
(see figure 1 for an illustration if this toy example). An autocorrelation function or a frequency analysis (power
spectrum) -options that do not require a series symbolisation- would also misleadingly conclude that the system is
in a periodic state. Interestingly enough, in such a (pathological) toy model, the visibility approach is not misleaded [2].

Note also that finite size effects can play an important role in the symbolisation preprocessing. If the series under
study is too short, an excessive number of symbols would inevitably introduce spurious finite size effects, and
accordingly, every measure based on the statistics of the symbolised series would be artificially biased. The optimal
number of symbols therefore usually depends as well on the size of the series under study.

Finally, it is worth recalling that value of measures computed from symbolised series, such as the well known Shannon
entropy, depend on the particular symbolisation, and hence are not invariant under smooth coordinate changes [1] (or
under simple changes of experimental units!).
All these issues are usually seen as intrinsic and inevitable drawbacks of the symbolisation method, as this is at
least dependent on both p and the specific partition in an ad hoc way. Note at this point that the visibility method
also induces a symbolisation in the original (multivariate) time series, as a mapping can be straightforwardly defined
between the series and the multiplex network’s vector integer degree sequence,

{x(t)}−−−→
HVG
{k(t)},

where k(t) ≡ (k[1](t), k[2](t), ..., k[d](t)) ∈ Zd and by construction k[α](t) > 1. Within this ’network symbolization’,
note that the number of symbols p is not a free parameter that needs to be tuned anymore, much on the contrary,
the number of symbols emerge naturally by construction and varies from map to map (from series to series). Also,
the distribution of symbols is not directly coarse-grained from the distribution of visits to the different regions
of the attractor. As a matter of fact, by construction the visibility algorithm makes use of the whole time series
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of (continuous) data to generate the degree sequence, and as there is no symbolization prior to this mapping, in
principle fine-grained fluctuations are taken into account at all scales.
Furthermore, no ad hoc phase space partition needs to be defined within the visibility method. This in principle
further removes the second source of ambiguity found for standard symbolization. Moreover, note also that visibility
algorithms are invariant under several changes of scale in the original time series [3, 4], hence removing yet another
source of ambiguity present in the symbolisation procedure.
Finally, note that whereas the degree sequence can be understood as a time series (global) symbolisation, other
structures involving more sophisticated properties of the visibility graphs (degree-degree correlations, spectral
properties, etc) can be directly retrieved and hence, at least in principle this method can yield more (or other)
information of the dynamical process not described by the symbolised series.

In what follows we compare the performance of the (multiplex) visibility methodology with the results obtained via
symbolisation, in the context of diffusively coupled chaotic maps.

II. ORDER PARAMETER AND PHASE DIAGRAM IN DIFFUSIVELY COUPLED CHAOTIC MAPS:
A COMPARISON BETWEEN THE MULTIPLEX AND THE TIME SERIES SYMBOLISATION

APPROACHES.

We focus on the first system of five diffusively coupled chaotic logistic maps considered in the main text, whose
evolution is described by

x[α](t+ 1) = (1− ε)f [x[α](t)] +
ε

2

(
f [x[α−1](t)] + f [x[α+1](t)]

)
. (1)

We generate multivariate orbits {x(t)}Nt=1,x ∈ R5 of size N and proceed to compute the interlayer averaged mutual
information IHVG via the associated visibility multiplex, as defined in the main text. We then compare this proposed
order parameter with an analogous measure ISYMB directly performed in the symbolized series. Without loss of
generality, for a symbolized series with p integer symbols, let us first define the pairwise mutual information

ISYMB
α,β =

p∑
s[α]=1

p∑
s[β]=1

P (s[α], s[β]) log
P (s[α], s[β])

P (s[α])P (s[β])
(2)

such that

ISYMB = 〈ISYMB
α,β 〉α,β .

In [5], p = 2 and a homogeneous phase space partition was used, but other choices can be made as well. In what
follows we compare the performance of IHVG and ISYMB as order parameters that encapsulate the rich dynamical
transitions that the system of CMLs undergo as we increase the coupling constant. Concretely, we investigate ISYMB

for (i) different number of symbols p, and (ii) different degrees of heterogeneity of the partition. Finally we investigate
the effect of shortening the size of the multivariate series under study, N . Such assessment is based in three different
criteria, namely (i) capacity of capturing the monotonic increase of synchronisation for weak coupling (ε < 0.1,
inside the Fully Developped Turbulent (FDT) phase), (ii) accuracy to detect major dynamical transitions (such as
the transition from FDT to a randomly selected pattern (PS), or the FDT to Spatio-temporal Intermittency (STI))
through sharp changes in the order parameter, and (iii) accuracy to detect secondary dynamical transitions, such as
the onset of multiband chaotic attractors inside the STI phase.
In what follows, we show that the visibility approach is at least as accurate as the optimal symbolisation (i.e., the
optimal selection of symbols and partition). Since this optimal selection is not known a priori, we conclude that the
visibility approach is, at least in the case under study, more efficient.

A. Effect of the number of symbols for a homogeneous phase space partition

Let us first fix an homogeneous partition of the phase space [0, 1]d for which cells are hypercubes of dimension d with
size 1/p, where p is the number of symbols considered, and let us explore the effect of varying p on the performance
of ISYMB. Note at this point that, if we only consider the ’symbolization’ aspect of the visibility algorithm, remind
that noisy series have an associated HVG with a mean degree 〈k〉 = 4. Therefore we might consider that, in a
first approximation, the HVG method should indeed be comparable to a symbolization with p ≈ 4. We summarise
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FIG. 2: (color online)(First row) Left panel: Averaged mutual information as a function of the coupling intensity ε, using
the visibility multiplex (blue line for IHVG) and using the symbolizes series with different symbols (yielding ISYMB). Grosso
modo, with p = 5 both curves are qualitatively similar. Right panel: zoom of the left panel into the STI phase. For ε ≈ 0.34,
the chaotic attractor splits into different bands, and such secondary transition is captured by a sharp change in the visibility
multiplex mutual information (blue). Note that in the case of symbolized series, both for small number of symbols (p = 2) as
well as for p > 10, this transition is not captured. (Second row) In the left panel, we plot the behavior of ISYMB with p = 2 in
the weak coupling regime (ε < 0.1), where the system displays spatio-temporal chaos (FDT phase) and the mutual information
among maps increase monotonically (but weakly) with ε. We find that ISYMB is not monotonic in this region. In the right
panel we plot the same results for different symbols p, recovering the correct monotonic increasing found with IHVG when the
number of symbols is increased. (Third row) In the left panel, we plot ISYMB with p = 100 symbols again the weakly coupling
regime. The monotonic increasing shape is lost again if the number of symbols is too large. This is confirmed in the right
panel, concluding that for large number of symbols ISYMB doesn’t capture the subtle mutual information increase with ε and
misleadingly predicts constant mutual information.

our results in figure 2. As expected, qualitatively speaking, the visibility approach yields similar results as the
symbolisation method for p = 4, 5. For the standard symbolisation (the one used in [5]) with p = 2, symbolisation
fails to accurately describe several properties such as the increase of synchronisation for weak coupling and the onset
of multiband attractors inside STI. Also, for large values p > 10, these properties are not captured anymore by the
symbolised series.

B. Effect of phase partitioning for a fixed number of symbols

Let us fix now the number of symbols to its standard value p = 2, and consider a generic phase partition of the
interval [0, 1] = [0, c]∪ (c, 1]. Here we explore the performance of ISYMB for different values of c ∈ [0, 1]. We find that
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Criterion HVG c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8 c = 0.9
Increase FDT

(weak coupling) YES NO YES YES YES NO NO NO NO NO
Transition to PS YES NO NO NO NO YES YES YES YES NO
Transition to STI YES NO NO NO NO YES YES YES YES YES

Onset of multiband
chaotic attractor YES NO NO NO NO NO YES YES YES NO

TABLE I: Capacity of both IHVG and ISYMB (with p = 2 symbols and an heterogeneous phase space partition [0, c) ∪ [c, 1])
to accurately describe several dynamical properties, such as (i) monotonical increase of synchronisation in the weak coupling
(ε < 0.1) FDT regime, (ii) on and off transition from FDT to PS, (iii) Transition from FDT to STI, (iv) Onset of multiband
chaotic attractor inside the STI phase.

Effect of the phase space partition c in [0,1]=[0,c]U[c,1]
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FIG. 3: (color online)IHVG and ISYMB (using the symbolized series with p = 2 symbols after different phase space partitioning
[0, c)∪ [c, 1]) as a function of the coupling intensity ε. The symbolised method is only able to accurately retrieve a subset of the
main dynamical properties (monotonic increase of ISYMB with the coupling constant in FDT phases, transition between FDT,
PS, STI, location of secondary transitions such as onset of multiband chaotic attractors) for particular values c. Interestingly,
the usual homogeneous value c = 0.5 is shown to be suboptimal, as for this case the symbolization fails to capture the onset of
multiband chaotic attractor (around ε ≈ 0.35), something that a nonstandard partition with c = 0.6, 0.7, 0.8 can do.

results dramatically depend on the selection of c and are summarised in table I and in figure 3. We haven’t found,
for the case p = 2, a proper partition that gathers better or equal results than the visibility method. Interestingly,
the standard (homogeneous) phase space partition (c = 0.5), used in [5], is shown to be suboptimal when compared
to other selections such as c = 0.7− 0.8.
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Effect of series size N
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FIG. 4: (color online)Comparison between IHVG and ISYMB as a function of the coupling constant ε, for different number of
symbols p, for time series of increasing size, from left to right: N = 26, 28, 210 and 212 respectively. Notice that the HVG
method is quite robust against shortening, as for sizes of 28 we already find the correct profile, including a monotonically
increasing function for weak coupling (FDT phase), the location of primary transitions, and the location of onset of multiband
chaotic attractor. Similar behaviour is found for p = 5, whereas the effect of shortening the size is more acute for larger number
of symbols.

C. Effect of time series size for different number of symbols

Finally, we study the effect of shortening the size of the time series. Usually, the shorter the time series, the smaller
the upper bound for the number of symbols that can be used before the lack of statistics takes a predominant role and
ruins the accuracy of the measurements. Hence the question, which is the ’optimal’ number of symbols conditioned
to the size of the series under study? Our results are summarised in the panels of figure 4. Roughly speaking, the
robustness of both the visibility method and the symbolisation with p ≈ 5 (the optimal symbolisation according to
our previous analysis) against series shortening is similar (the same qualitative results are found in both cases up to
short series of size N = 28 data).

III. EDGE OVERLAP AS AN ALTERNATIVE MEASURE TO DESCRIBE PHASES

We can extend the analysis performed using the pairwise layer averaged mutual information to another multiplex
measure. The so called average edge overlap 〈o〉 is defined as:

〈o〉 =
1

K
∑
i,j

oij , oij =
1

M

∑
α

a
[α]
ij (3)
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FIG. 5: Average edge overlap of the visibility multiplex as a function of the coupling constant ε, computed for the system of
five diffusively coupled chaotic maps studied in the main body of the paper.

where oij is the overlap of the edges between node i and node j at the different layers, and K is the total number

of pairs of nodes connected on at least one of the M layers [6]. Notice that oij = 0 if a
[α]
ij = 0 ∀α, while it takes its

maximum oij = 1 when nodes i and j are connected at each of the M layers. Consequently, the more similar are the
connection patterns of the layers of M and, in turn, the structure of the corresponding time series, the higher 〈o〉,
with 〈o〉 = 1 if and only if all the layers are identical, i.e. if the original M -dimensional time series can be effectively
reduced to a 1-dimensional one.
In figure 5 we plot the average edge overlap for the system of CMLs studied in the main body of the paper, as a
function of the coupling constant ε. The shape of this purely multiplex measure is qualitatively similar to the pairwise
layer averaged mutual information, although subtle dynamical transitions, such as the onset of multiband chaotic
attractors, is not clearly seen via this particular metric.

IV. DETECTING THE ONSET OF SYNCHRONISATION IN GLOBALLY COUPLED CHAOTIC MAPS.

To round off the validation part presented in the main body of this paper, we consider here a system of Globally
Coupled Maps (GCMs) [7]:

x[α](t+ 1) = (1− ε)f [x[α](t)] +
ε

M

M∑
β=1

f [x[β](t)] (4)

∀α = 1, . . . ,M , where the dynamics of each unit is governed by the logistic map f(x) = µx(1 − x), µ ∈ [0, 4]. This
system can be indeed considered as a mean-field version of CMLs. In particular we consider values of µ for which
each map is chaotic, i.e. µ > µ∞ = 3.56995..., excluding periodic windows. In those cases, complete synchronization
of the GCM is only reached when the system is in the simplest chaotic attractor, where x[α] = x[β] ∀α, β, and the
dynamics effectively reduces to that of a single logistic map. It can be proved [7] that this is indeed the stable regime
for those values of ε for which the Lyapunov exponent λ0 of one isolated logistic map satisfies the inequality

λ0 + log(1− ε) < 0.
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FIG. 6: Scatter plot of the critical value of the coupling strength for the onset of complete chaotic synchronization, as predicted
by the multiplex visibility graph εmultiplex

c , versus the theoretical value εc.

The onset of complete synchronization is therefore reached at a critical value of the coupling strength

εc = 1− exp(λ0)−1.

For example at µ = 4, by making use of the the analytic expression λ0 = log 2, we get that the onset of complete
synchronization occurs at εc = 1/2, whereas for other values of µ the value of εc can be derived from the numerical
evaluation of λ0. The multiplex visibility graph approach is able to predict the position of the onset of complete
synchronization. We conjecture that the average mutual information I attains its maximum at the onset of complete
synchronization, and accordingly we propose the quantity

εmultiplex
c ≡ min

ε
(argmax(I(ε)))

as a measure of εc. In Fig. 6 we plot εmultiplex
c versus εc for a system of 5 globally coupled chaotic maps and for

different values of µ ∈ [µ∞, 4], finding a remarkable agreement in every case.

V. ANALYSIS OF MULTIVARIATE FINANCIAL SERIES

We have analyzed a large dataset of financial stocks comprising stock evolution of the 35 major american companies
from the New York Stock Exchange (NYSE) and Nasdaq in the period 1998-2012, the majority of which belong to
the Dow Jones Industrial Average (see table II for a detailed list of all the companies). The NYSE is the largest and
most liquid cash equities exchange in the world by market capitalization. The series have very high resolution (one
data per minute), yielding O(2 · 106) data per company.
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