### Supplementary Information:

### **Supplementary Figure 1**



**Supplementary Figure 1: A)** Replicate data of EMSA experiments and quantitation presented in Figure 1B and C showing reproducibility of trends for  $5x\kappa$ B\_IkBa and  $5x\kappa$ b\_IkB $\beta$  reconstitution experiments. **B)** NFkB activity in IkBa-/- cells reconstituted with NFkB inducible IkB $\epsilon$ . **C)** Replicate data of EMSA experiments and quantitation presented in Figure 1D showing reproducibility of trends for AKBI experiments. NFkB label indicates p50:p65 heterodimer, in A-C bottom band is NFY control for EMSA.

## **Supplementary Figure 2**



Supplementary Figure 2: A-C Replicate data of EMSA experiments and quantitation presented in Figure 3A, C, & E showing reproducibility of trends for NLSm, NESm, and 5m IkBa constructs, respectively. NFkB label indicates p50:p65 heterodimer bottom band is NFY control.

■ wt

■wt

■wt

NESm

■ wt

5M

NESm

NLSm

# Supplementary Table 1: Species considered in the kinetic model.

| Abbreviation | Component   | Compartment |  |
|--------------|-------------|-------------|--|
|              |             |             |  |
| ikk          | IKK         | cytoplasm   |  |
| nfkb         | ΝϜκΒ        | cytoplasm   |  |
| nfkbn        | ΝϜκΒ        | nuclear     |  |
| ikbat        | ΙκΒα mRNA   | cytoplasm   |  |
| ikba         | ΙκΒα        | cytoplasm   |  |
| ikban        | ΙκΒα        | nuclear     |  |
| ibkanfkb     | ΙκΒαΝϜκΒ    | cytoplasm   |  |
| ikbanfkbn    | ΙκΒαΝϜκΒ    | nuclear     |  |
| ikkikba      | ΙΚΚΙκΒα     | cytoplasm   |  |
| ikkikbanfkb  | ΙΚΚΙκΒαΝΓκΒ | cytoplasm   |  |

**Supplementary Table 2:** Reactions and parameters included in the model. The rightmost column indicates the references used as sources for the parameters. Parameters J, L, and N are given in units of the Boltzman constant  $K_B$  times the temperature.

| Label          | Reaction                         | Туре                      | Compartment | Value             | Units                              | Ref |
|----------------|----------------------------------|---------------------------|-------------|-------------------|------------------------------------|-----|
| a_c_ai         | lkBa + IKK => IKKIkBa            | Association               | Cyt         | 1.35              | µM <sup>-1</sup> min <sup>-1</sup> | 1   |
| a_c_an         | lkBa + NFkB => lkBaNFkB          | Association               | Cyt         | 30                | µM <sup>-1</sup> min <sup>-1</sup> | 1   |
| a_c_2ain       | IKKIkBa + NFkB =><br>IKKIkBaNFkB | Association               | Cyt         | 30                | µM⁻¹ min⁻¹                         | 1   |
| a_c_2ani       | IkBaNFkB + IKK =><br>IKKIkBaNFkB | Association               | Cyt         | 11.1              | µM⁻¹ min⁻¹                         | 1   |
| a_n_an         | lkBan + NFkBn => lkBaNFkBn       | Association               | Nuc         | 30                | µM <sup>-1</sup> min <sup>-1</sup> | 1   |
| d_c_ai         | IKKIkBa => IKK + IkBa            | Dissociation              | Cyt         | 0.075             | min <sup>-1</sup>                  | 1   |
| d_c_an         | lkBaNFkB => lkBa + NFkB          | Dissociation              | Cyt         | 0.00006           | min <sup>-1</sup>                  | 2   |
| d_c_2ain       | IKKIkBaNFkB => IKKIkBa +<br>NFkB | Dissociation              | Cyt         | 0.00006           | min <sup>-1</sup>                  | 2   |
| d_c_2ani       | IKKIkBaNFkB => lkk +<br>IkBaNFkB | Dissociation              | Cyt         | 0.075             | min <sup>-1</sup>                  | 1   |
| d_n_an         | lkBaNFkBn => lkBan + NFkBn       | Dissociation              | Nuc         | 0.00006           | min <sup>-1</sup>                  | 2   |
| ex_a           | lkBan => lkBa                    | Export                    | Nuc->Cyt    | 0.012             | min <sup>-1</sup>                  | 1   |
| ex_n           | NFkBn => NFkB                    | Export                    | Nuc->Cyt    | 0.0048            | min <sup>-1</sup>                  | 1   |
| ex_2an         | lkBaNFkBn => lkBaNFkB            | Export                    | Nuc->Cyt    | 0.828             | min <sup>-1</sup>                  | 1   |
| in_a           | lkBa => lkBan                    | Import                    | Cyt->Nuc    | 0.018             | min <sup>-1</sup>                  | 1   |
| in_n           | NFkB => NFkBn                    | Import                    | Cyt->Nuc    | 5.4               | min <sup>-1</sup>                  | 1   |
| pd_c_a         | lkBa= >                          | Prot. deg.                | Cyt         | 0.12              | min <sup>-1</sup>                  | 2   |
| pd_c_2ai       | IKKIkBa => IKK                   | Prot. deg.                | Cyt         | 0.0018            | min <sup>-1</sup>                  | 2   |
| pd_c_2an       | lkBaNFkB => NFkB                 | Prot. deg.                | Cyt         | min <sup>-1</sup> | min <sup>-1</sup>                  | 2   |
| pd_c_3ain      | IKKIkBaNFkB => IKK + NFkB        | Prot. deg.                | Cyt         | 0.36              | min <sup>-1</sup>                  | 2   |
| pd_n_2an       | lkBaNFkBn => NFkBn               | Prot. deg.                | Nuc         | 0.00006           | min <sup>-1</sup>                  | 2   |
| pd_n_a         | lkBan =>                         | Prot. deg.                | Nuc         | 0.12              | min <sup>-1</sup>                  | 1   |
| ps_c_a         | => lkBa                          | Prot. synth.              | Cyt         | 0.2448            | min <sup>-1</sup>                  | 1   |
| rd_a           | lkBat =>                         | RNA deg.                  | Cyt         | 0.035             | min <sup>-1</sup>                  | 3   |
| rs_an          | => IkBat                         | (induced by NF-           | Nuc->Cyt    | 0.06              | µM⁻¹ min⁻¹                         | 3   |
| K <sub>A</sub> |                                  | κB) RNA synth.            |             | 0.2               | μM                                 | 3,4 |
| J              |                                  |                           |             | 5.8               | K <sub>B</sub> T                   | 3,4 |
| L              |                                  |                           |             | -1.3              | K <sub>B</sub> T                   | 3,4 |
| Ν              |                                  |                           |             | 0.1               | K <sub>B</sub> T                   | 3,4 |
| rs_a           | => IkBat                         | (constitutive) RNA synth. | Nuc->Cyt    | 0.00052           | µM⁻¹ min⁻¹                         | 3   |

**Supplementary Table 3:** Numerical function used to represent IKK activity over time. The function reflects typical IKK activity curves determined by kinase assays (<sup>1, 2</sup>). Activity between time points were determined using linear interpolation.

| Time (min) | IKK activity (normalized 0-1) |  |
|------------|-------------------------------|--|
| 0          | 0.01                          |  |
| 5          | 0.6                           |  |
| 10         | 1                             |  |
| 15         | 0.65                          |  |
| 20         | 0.5                           |  |
| 25         | 0.36                          |  |
| 30         | 0.3                           |  |
| 60         | 0.3                           |  |
| 360        | 0.3                           |  |

The response of the NF<sub>K</sub>B regulatory module was simulated using the computational ODEbased model described in <sup>3</sup> which was derived from <sup>1</sup> and <sup>2</sup>. Briefly, the model considers the various reactions between complexes comprising combinations of IKK, NF<sub>K</sub>B and I<sub>K</sub>Bα (Sup. Table 1 and 2). In order to avoid obfuscating the roles of the various regulatory mechanisms involving I<sub>K</sub>Bα, we removed the other I<sub>K</sub>B family members from the model. The model incorporates production and degradation of I<sub>K</sub>Bα and the corresponding mRNA. Levels of ReIA and IKK do not change appreciably in the time scale of the experiments and therefore their abundances are considered fixed parameters. All reactions, except NF<sub>K</sub>B-dependent induction of I<sub>K</sub>Bα follow mass action kinetics. NF<sub>K</sub>B-dependent induction of I<sub>K</sub>Bα is represented by the model in <sup>4</sup> (model 3, additive Pol II recruitment, n=5) (Equations 1-3) and occurs with an explicit delay of 15 minutes.

$$\frac{d[mRNA]}{dt} = rs_an \frac{1}{1 + \frac{1}{F_{REG}}e^{\beta J}}$$
[1]

 $F_{REG}$ 

$$= \frac{2^{-n} \left[ \frac{[A]}{K_A} e^{-\beta(L+N)} - \sqrt{\frac{[A]}{K_A} e^{-\beta L} \left( e^{-\beta N} \left( \frac{[A]}{K_A} e^{-\beta(L+N)} - 2 \right) + 4 \right) + 1} + 1 \right]^n + 2^{-n} \left[ \frac{[A]}{K_A} e^{-\beta(L+N)} + \sqrt{\frac{[A]}{K_A} e^{-\beta L} \left( e^{-\beta N} \left( \frac{[A]}{K_A} e^{-\beta(L+N)} - 2 \right) + 4 \right) + 1} + 1 \right]^n}{2^{-n} \left[ \frac{[A]}{K_A} e^{-\beta N} - \sqrt{\frac{[A]}{K_A} e^{-\beta N} \left( e^{-\beta N} \left( \frac{[A]}{K_A} e^{-\beta N} - 2 \right) + 4 \right) + 1} + 1 \right]^n} + 2^{-n} \left[ \frac{[A]}{K_A} e^{-\beta N} + \sqrt{\frac{[A]}{K_A} e^{-\beta N} \left( e^{-\beta N} \left( \frac{[A]}{K_A} e^{-\beta N} - 2 \right) + 4 \right) + 1} + 1 \right]^n} \right]^n}$$

$$[2]$$

$$\beta = \frac{1}{K_B T}$$

$$[3]$$

Here, [A] is the concentration of nuclear NF $\kappa$ B and the parameters L, N, J and K<sub>A</sub> are as in Supplemental Table 2.

Models were equilibrated with no stimulus until steady state was reached. An IKK multiplier of 0.01 was included during this stage to represent basal activity. As in <sup>3</sup>, exposure to TNF was simulated with a numerical function representing IKK activity (Sup. Table 3) determined under conditions similar to the experiments. This function was used as a multiplier for the reaction

terms including IKK-induced degradation of IkB. Time course curves in Figure 2 were generated by applying multipliers to the kinetic parameters corresponding to the reactions in Figure 2A. The multiplier values were: $2^{-3, -2.5, -2, -1.5, -1, -0.5}$  (reactions 1,2,3 and 5) and  $2^{-6, -5, -4, -3, -2, -1}$  (reaction 4), reflecting different sensitivities for reaction 4. NF<sub>K</sub>B time courses are normalized to their peak value. Sensitivity ratios s<sub>r</sub>(t) at a particular time t<sub>i</sub> is defined as (eq 4):

```
(nucNF\kappa B^{perturbed} - nucNF\kappa B^{unperturbed})/nucNF\kappa B^{unperturbed}, [4]
```

where nucNF $\kappa$ B<sup>perturbed/unperturbed</sup> are the normalized nuclear concentrations of NF $\kappa$ B at time t<sub>i</sub> obtained with a model with/without a multiplicative factor (0.9, 0.5, 0.1) for the indicated kinetic rate parameter (values shown in percent units). The global average sensitivity in figure 2C was calculated as the root mean square of the s<sub>r</sub>(t) sampled at 1 minute intervals between 1 and 120 minutes post-stimulation. The differential equations were solved using the "StiffnessSwitching" method of the NDSolve function in the package Mathematica 8 (Wolfram Research, Champagne, IL).

## **References:**

- 1. Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. *Science* 2005, 309:1857-1861.
- 2. Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A. IkappaBepsilon provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. *J Cell Biol* 2006, 173:659-664.
- 3. Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. *PLoS Biol* 2013, 11:e1001647.
- Giorgetti L, Siggers T, Tiana G, Caprara G, Notarbartolo S, Corona T, Pasparakis M, Milani P, Bulyk ML, Natoli G. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. *Mol Cell* 2010, 37:418-428.