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I. THE DATA SET

A. The UK street network

We study the street network in the geographical region
defined by Great Britain, excluding Northern Ireland,
i.e. the geographical region defined by England, Scot-
land and Wales which is generally referred to as Britain.
The dataset used is Meridian 2 [1], a publicly available
dataset based on street centre lines produced by the UK
National Mapping Agency, the Ordnance Survey.

A street network is a planar graph representation of
a map, where the street intersections are the vertices
N , and the street segments are the links E. In prac-
tice, these are extracted from maps given by shape files,
where the streets are lines that have been drawn with a
mouse. This means that every time there is a ”click” a
node is generated. Therefore, it is highly likely that a
single street will be divided into many different segments
with nodes of degree two, in particular for non-straight
streets. Nodes of degree two will also appear when a
street changes its name. The process of urbanisation can
be characterised by the intersection of the streets. We
therefore proceed to remove all nodes of degree 2. Note
that the main results of the paper would not change if
these were left, the extra nodes will only affect the com-
putational process, making it more cumbersome. After
that the street network is composed of N = 715736 ver-
tices and E = 1008661 street segments, with an average
degree 〈k〉 = 2E/N = 2.82. For the reasons we explain in
Sec.II, we replace all the street segments that represent
river bridges with a set of connected segments of 40 m.

Applying for each city the algorithm described in Sec.
IIA, we extract the 61 largest cities from the dataset.
Since the city size distribution approximates a power law,
i.e. Zipf’s law, it is impossible to set a number of repre-
sentative cities for this study and for this reason, such a
number is arbitrary. In this way, we obtain the UK urban
dataset, which is displayed in Fig. S1. All the measures
presented in the main text and in the Suppl. Inf. are
computed for this specific system. For any plot of urban
UK, each point represents an individual green cluster of
Fig. S1.

For the analysis, we want to compare two different
kinds of networks: rural and urban. In Sec. IIA, we have
described how to extract a selection of urban street net-
works. In order to compare these with rural networks, we
extract all the possible streets that belong to urbanised
areas. We will consider urbanised from as small as 80 in-
tersections. This will ensure that we will not be mixing
urban networks in our rural sample. We delete all those
cities from the original street network, so that what re-
mains is mostly a rural street network. The so obtained
street network is composed of N = 240274 vertices and

E = 320425 edges with an average degree 〈k〉 = 2.67.
The measures on the rural dataset are done by consid-

ering 1000 samples of the rural street network, which are
extracted by picking a random point in the rural net and
by considering the street network contained in a square
around this point with a side randomly chosen between
20km and 70km. The large sample size and varying win-
dow size for the rural space, together with the different
runs ensures the statistical validity of the results.

B. California

We start with the publicly available OSM (Open Street
Map) street network for California [2]. We remove from it
cycleways, foot-ways and service paths. Finally we keep
the largest component, removing the street intersections
with degree 2. The resulting network has N = 1381784
nodes, and E = 1850268 edges, with an average degree
〈k〉 = 2.68.

Applying for each city the algorithm described in Sec.
IIA, we extract the largest 52 cities of the given dataset.
In this way we obtain the urban dataset, whose cities are
shown in Fig. S2.

By applying the algorithm of Sec. IIA to more clus-
ters, as in the UK case, we extract all the cities with
more than 300 intersections. Then, we clear the origi-
nal dataset from all the extracted cities and in this way
we obtain the rural network dataset for California, com-
posed of 390473 vertices and 482362 edges for an average
degree 〈k〉 = 2.47.

As for the rural UK network, measures for the ru-
ral California network are generated by considering 1000
samples of the rural street network, which are obtained
by picking up a random point in the rural net and the
considering the street network contained in a square
around this point with a side randomly chosen between
20km and 70km.

C. The Historical Dataset

For the historical dataset, we employ 9 maps which
cover the street network evolution of the Greater Lon-
don Area from 1786 until 2010, namely 1786, 1830, 1880,
1900, 1920, 1940, 1965, 1990, 2010. The maps were dig-
italised from original maps with techniques that are de-
scribed in [3]. We extract from each of these street net-
works the city cores, with the techniques described in
Sec. IIA. An analysis of this street network in terms of
its primal and dual representation can be found in [3, 4].

It is important to notice that the historical dataset and
the urban UK dataset come from different original maps
and extraction procedures. The dataset have different
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level of detail, and hence one will have more roads than
the other, leading to a different ”city size” determined
by the number of intersection points. Then it is not sur-
prising that the size of modern London, as for instance
in Fig. 6 of the main text, differ from a dataset to the
other one.

D. Urban Population and Street Intersection

Correlations

In Fig. S3, we show the correlations between resi-
dential population and street intersections for London
throughout its history. On the vertical axis we display
the residential population pop(N) for the wards of Lon-
don from 1786 to 2010 as a function of the street intersec-
tions N , for each ward. The aforementioned quantities
are strictly correlated and we find that pop(N) ∝ N1.2.

II. PERCOLATION AND LOGISTIC FIT

Population and population density are the two main
variables that have been used in order to define and sim-
ulate urban settlements through various techniques in-
cluding percolation theory, diffusion limited aggregation,
and clustering [5–8]. Recently, it has been shown that
the street intersection density space is also a good proxy
to assess city boundaries [3, 9].

The general strategy used to apply site percolation to
the street network, is to consider a geographical area sur-
rounding a city and implement a similar algorithm to
the continuous ‘City Clustering Algorithm’ defined in [7].
Starting from a given distance threshold τ , street inter-
sections which are at a distance smaller or equal than τ
are clustered. We expect that increasing τ , larger clus-
ters form until a giant component appears, which spans
the street network. The threshold at which the giant
component appears is called the critical threshold τc and
we might be tempted to define the city boundaries as the
boundaries of the giant cluster at the percolation thresh-
old.

To find the value of τc, we measure the average cluster
size N of the cluster which a randomly picked up inter-
section belongs to (notice that this is different from the
average cluster size), when we exclude the largest clus-

ter. This is defined as N(τ) =
∑

s
ns(τ)s(τ)2

∑
s

ns(τ)s(τ) , where ns(τ)

is the number of clusters of size s(τ) and it diverges at
τ = τc [10].

The top panels of Fig. S4, show N(τ) for the street
intersection map of London (left panel), and Manchester
(right panel). In the case of London, we see how the per-
colation threshold τc ≈ 205m appears to be well defined
by the point where a discontinuity appears. Unfortu-
nately, this discontinuity corresponds to the threshold at
which the south of London merges with the north of Lon-
don, i.e. the threshold to overcome the River Thames,

when the second largest cluster merges with the largest
one. To take into consideration such natural barriers, we
artificially add intersections in the middle of the bridges.
The resulting percolation process is represented by the
red curve in the top left panel of Fig. S4. This time
the discontinuity disappears, indicating that the thresh-
old previously found was just an artefact derived from
the natural barrier.

In order to see whether this behaviour is particular
to London, we examine Manchester, which is a morpho-
logically articulated city if compared to London. We find
that several natural barriers, such as rivers or green land,
are reflected as jumps in N(τ) (see top right panel of Fig.
S4).

However, an infinite component does not emerge in
these systems, for reasons which will appear clearer at
the end of this section.

In the bottom left panel of Fig. S4, following the same
percolation procedure, we show the maximum cluster
size NMax(τ) as a function of the threshold for London.
The black dots correspond to the case where the River
Thames barrier has not been removed, the red points
to the case where the river barrier has been removed,
by artificially adding street intersections at 40m distance
on the bridge segments of the street network. We can
see how the behaviour of the red plot is different only
for those scales that are smaller than the River Thames
width, while for larger scales both behaviours are equiva-
lent. Then we can say that natural barriers do not mod-
ify the functional behaviour of NMax(τ) at large scales.
However in order to obtain clear logistic fits for all the
cities in the UK, we add intersections at 40m distance on
all the bridge segments.

A. Logistic fit algorithm

The present methodology is a bottom-up one. It is
specifically designed to extract city boundaries with a
high level of precision, but in order to attain such a pre-
cision cities need to be analysed singularly. The oppo-
site happens for top-down approaches [11], where a large
number of city boundaries can be extracted more effi-
ciently within a certain degree of approximation.

Often small satellite urban conglomerations form
around cities. When the city expands, these small towns
tend to get absorbed by the city. However, since we ob-
serve cities in all their stages of evolution, there are cases
where this absorption process is just taking place. This
is the case for instance of the city of Manchester, which
we show at the top panels of Fig. S5. In such cases, we
see that the NMax(τ) plot seems to be a superposition
of different trends. A first condensation process seems to
take place defining the city centre (τ = 248m), but just
before the condensation, the growth starts again to in-
corporate the northern extensions of the city. After that
the plot eventually condensates for τ = 382m.

Any classical fitting algorithm can be used to extract
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the relevant logistic parameters, but in order to automate
the city extraction process, we have created an algorithm
to find out the best logistic fit for the measured NMax(τ),
i.e. to define the three parameters τ0, r and C. The first
step is to find the inflection point τ0. To do that, we
build the derivative of NMax(τ), ∆NMax(τ)/∆τ . This
should follow the Hubbert function behaviour, with a
peak in τ0. In order to measure the growth parameter
k, we consider the points of NMax(τ) for τ < τ0. These
grow exponentially as erτ . It is important to always take
into consideration natural barriers, since these can bias
NMax(τ), i.e. leading to peaks in ∆NMax(τ)/∆τ . At
last, we find the carrying capacity C, by making a logis-
tic fit of NMax(τ), where τ0 and r are fixed parameters
given by the method hitherto explained. For the reasons
we stated before (natural barriers, bridges, etc.), the pa-
rameters for the logistic fit extracted through the algo-
rithm could be incorrect. Then a visual check is always
performed, and the parameters are re-computed manu-
ally if need be.

Another case that we discuss here is the one of Leeds,
Bradford and Brighouse in the UK (bottom panels of Fig.
S5), which are cities that are in the process of merging,
i.e., the urbanization process is leading the cities to merge
into a single urban agglomeration.

A simple logistic fit for NMax(τ) would not lead to an
accurate result, since following the normal procedure for
the extraction of the condensation threshold, the three
cities of Leeds, Bradford and Brighouse are merged into
a single urban agglomeration. In such rare cases, a more
careful analysis would be required in order to understand
what is going on, i.e. the urban merging process, for
instance by following the behaviour of the first, second
and third largest cluster separately.

Nevertheless the logistic behaviour is present in all
the mentioned cases and the apparent functional discon-
gruities can be easily interpreted as stated above.

III. FURTHER STATISTICAL ANALYSIS

Here we show some relationships which could possi-
bly shed some light on the L(N) behaviour shown in
the main text. In Fig. S6, in panels a, c, we show

the average degree 〈k(N)〉 and the average street length
〈l(N)〉 as a function of the number of street intersec-
tions N for the UK urban street network. As we can see,
they are both compatible with a constant function and
this relates to the linear behaviour of L(N), as shown
in the main text (we remind the reader that we can
write L(N) = 〈k(N)〉〈l(N)〉N). In panels b, d, we show
the same quantities as measured for the rural UK street
network, and we can observe a more inhomogeneous be-
haviour for both quantities.

In Fig. S6, panels e, g, we show the average degree
〈k(N)〉 and the average street length 〈l(N)〉 as a function
of the number of street intersections N for the urban
street network in California. In this case, while 〈k(N)〉 is
compatible with a constant function of N , 〈l(N)〉 displays
a slightly super-linear behaviour, which then results in
slightly super-linear behaviour observed for L(N) in the
main text. In panels f, h, we show the same quantities
as measured for the rural California street network, and
in this case we can also observe a more inhomogeneous
behaviour for both quantities.

In Fig. S7, we show the measure of the total street
length L(N), as measured in the historical dataset. In
the left panel, we show the measure produced with the ac-
tual administrative boundary definition of Greater Lon-
don, and in the right panel the same measure but over
the urban street network as defined by the Jenks algo-
rithm exposed in [3]. As we can see, the behaviour of
L(N), as measured for the administrative boundaries is
consistently sub-linear, while it becomes linear when we
consider natural boundaries. There is no doubt about
the fact that the sub-linear behaviour emerges when we
mix an urban street network with a rural street network.
This figure shows the misleading results that can be ob-
tained when we measure the properties of street networks
without a proper definition for city boundaries.

For the sake of completeness, in Fig. S8, we show the
statistical distribution for the logistic parameters r, τ0

and C for the case of the UK. We show the carrying
capacity analysis C, in terms of a rank statistics as it
represents the city size in our approach. We report not
significant statistical correlations between the different
parameters.
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FIG. S1: The UK street network: the rural street network (grey), the urban street network (red and green), the 61 largest
cities (green) employed in the analysis.
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FIG. S2: The California street network: the rural street network (grey), the urban street network (red and green), the 52 cities
in California which define the California urban street network (green) employed in the analysis.
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FIG. S3: Correlations between the population pop(N) and the number of street intersections N for the wards of London from
1786 to 2010.
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FIG. S4: Top panels: the average cluster size N(τ) of the cluster which a randomly picked intersection belongs to as a function
of the threshold τ , for London (left panel) and Manchester (right panel). Bottom left panel: maximum cluster size NMax(τ) as
a function of the threshold τ for London. Bottom right panel: the London maximum cluster at the city condensation threshold.
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FIG. S5: Top-left panel: The maximum cluster size as a function of τ for Manchester. Top-right panel: the maximum cluster
for Manchester and surrounding area for different values of τ . Bottom-left panel: The maximum cluster size as a function of τ

for Leeds. Bottom-right panel: the maximum cluster for Leeds and surrounding area for different values of τ .
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FIG. S6: Panels a-d The UK street network: panel a: average degree 〈k(N)〉 for the urban UK; panel b: average degree 〈k(N)〉
for the rural UK; panel c: average street length 〈l(N)〉 for the urban UK; panel d: average street length 〈l(N)〉 for the rural
UK. Panels e-h The California street network: panel e: average degree 〈k(N)〉 for urban California; panel f: average degree
〈k(N)〉 for rural California; panel g: average street length 〈l(N)〉 for urban California; panel h: average street length 〈l(N)〉 for
rural California.
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FIG. S7: Figure taken from [3]: in the left panel the total street length L(N) for the historical dataset as measured in the
Greater London administrative boundary. In the right panel L(N) as measured in the same dataset, when the city is extracted
using a natural boundaries procedure.
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FIG. S8: Analysis for the logistic parameters for the UK. In the left panel the frequency distribution P (r) for the growth
parameter r. In the central panel the frequency distribution P (τ0) for the inflection point τ0. In the right panel the frequency
rank statistics C(rank) for carrying capacity C.


