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Appendix S1: The simulation model 
	

	

Let	nj,i,t	be	the	number	of	individuals	in	size	class	j	(j=1,2,3),	patch	i	(i=1..S)	at	time	t	and	j	their	

fertility.	The	first	size	class	consists	of	pre‐reproductive	individuals	(fertility	1	=0),	while	the	

third	one	represents	old,	large	spawners,	for	whom	per	capita	fertility	is	assumed	to	be	much	

larger	than	that	of	reproductive	individuals	in	the	second	size	class	(3	>>2).	Let	j	be	the	annual	

survival	in	size	cass	j,	and	j	the	fraction	of	individuals	that	move	from	size	class	j	to	the	next	one	

every	year.	

The	total	number	of	eggs	Li,t	produced	in	patch	i	at	year	t		is	computed	as	follows:	

			 
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Before	settlement,	a	fraction	of	larvae	produced	in	patch	i	disperses	to	contiguous	patches	k	with	

probability	mpLi,k.	The	migration	kernel	mk(x)	has	been	defined	by	assuming	that	the	dispersal	

probability	to	a	distance	x	[km]	has	a	normal	shape	centred	on	the	area	of	origin,	that	is:	
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Given	the	mean	range	of	dispersal	(dL)	of	90%	of	the	larvae,	the	corresponding	standard	

deviation	L	can	been	computed	so	as:	
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As	each	patch	is	1	km	long,	by	centring	the	migration	kernel	in	the	middle	of	the	patch	i	(that	

therefore	stretches	from	i‐0.5	to	i+0.5),	the	retention	rate	L	(that	is	the	fraction	of	individuals	

that	remain	in	the	same	patch)	can	been	computed	as	follows:	
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while	the	fraction	mpLi,k	of	larvae	produced	in	patch	i	and	drifted	to	patch	k	(ki):	
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The	total	number	of	eggs	in	patch	i	after	dispersal	is	computed	as	follows:		
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If	boundaries	(at	i=1	and	i=S)	are	permeable,	a	fraction	of	the	larval	recruitment	is	lost	at	the	

edges	because	of	passive	dispersal	outside	the	suitable	habitat.	

The	fraction	of	Larvae	that	successfully	settle	down	and	recruit	to	the	first	size	class	is	assumed	

to	be	density	dependent	of	the	Beverton‐Holt	type,	that	is:	
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where	0Max	is	survival	at	low	larval	density	and		a	saturation	constant	proportional	to	the	

strength	of	the	density	dependency.	The	maximum	number	of	recruits	in	the	first	size	class	(for	

L'→)	is	thus	equal	to	0Min	/.		

Parameters	0Max	and		of	the	recruitment	function	were	computed	as	follows	[1]:		

0Max	=	C	Req/Leq	

		 	=	(C‐1)/	Leq	

where	Leq	is	the	local	larval	abundance	and	Req	the	recruitment	at	the	un‐fished	equilibrium.	

Although	varying	C	does	not	change	population	density	and	structure	at	equilibrium,	the	smaller	

the	value	of	C	the	lower	the	effect	of	density	on	larval	settlement	and	the	slower	the	population	

dynamics	when	perturbed	(e.g.,	recovery	towards	the	unfished	carrying	capacity	after	decline)	

Even	though	the	oceanographic	and	ecological	processes	driving	passive	larval	dispersal	are	

obviously	different	from	those	related	to	active	fish	movement,	for	the	purpose	of	the	present	

analysis		we	used	a	similar	mathematical	formulation	to	describe	the	movement	kernel	mpj,i,k	

(k=1,..,S;		j=1,2,3)	of	juvenile	(first	size	class)	and	adult	(size	classes	2	and	3)	individuals,	namely:	
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where	 '
,, tijn is	the	number	of	individuals	in	stage	j	in	patch	i	after	dispersal,	
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and	the	standard	deviation	j	of	the	dispersal	kernel	in	stage	j	is	computed	from	the	mean	range	

of	dispersal	(dj)	of	90%	of	the	individual	in	stage	j	so	that:		
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Timing	of	the	events	simulated	by	the	model	is	as	follows:	reproduction,	dispersal,	growth	and	

fishing.	

	

Fishing	effort	

We	assume	that	the	fishing	effort	Ei,t	is	not	uniformly	distributed	along	the	fishable	area	because	

fishermen	concentrate	their	effort	where	the	catch	is	expected	to	be	larger,	that	is	where	biomass	

is	more	abundant.	Let	total	effort	(TE)	be:		
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wi	being	the	mean	weight	of	organisms	in	size	class	j	(if	a	size	class/stage	j	is	not	fished,	wj	was	

set	to	zero).		

The	number	of	fishing	boats	in	patch	i	at	time	t	can	be	thus	computed	as	follows:	
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where		

	



























































3

2
,,

3

2
,,

,

max

1exp

j
tijji

j
tijj

ti

nw

nw

 	 if	patch	i	is	not	in	a	reserve	 	 (S8)	

,		 i,t	=	0		 	 	 	 	 if	patch	i	is	in	a	reserve		

and		>0	is	a	scaling	parameter	‐	the	larger	,	the	more	clumped	boat	distribution	is	in	areas	with	

highest	biomass.	



	

Total	Allowable	Catch	(TAC)	

The	TAC	is	computed	as	follows:	
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Where	 '
,, tijn is	the	number	of	individuals	in	stage	j	in	patch	i	after	dispersal	and	fj	are	the	stage	

specific	fishing	mortalities	(if	a	stage	j	is	not	fished,	wj	is	set	to	zero).	Here	we	have	assumed	that	

fish	in	the	first	stage	are	not	harvested		(f1=0)	either	because	enforced	regulations	do	not	allows	

small	fish	harvesting	or	because	their	body	size	is	smaller	than	the	mesh	size	and	thus	cannot	be	

caught	in	the	fishing	gear.	As	we	assume	that	the	catchability	of	large	spawners	q3	is	larger	than	

that	of	individuals	in	stage	2	(i.e.,	q3	=	k	q2	with	k1),	fishing	mortality	f3	suffered	by	big	spawners	

at	a	given	level	of	fishing	effort	is	also	larger	than	that	in	stage	2	(i.e,	f3	=	k	f2		).	The	value	of	

fishing	effort	EMSY	and	the	corresponding	values	of	mortalities	 MSYf 2 	and	 MSYf3 	(=	k MSYf 2 )	that	

allow	for	the	maximum	sustainable	yield	(MSY)	under	traditional	management	were	derived	

through	numerical	simulations.		

The	potential	catch	at	time	t	(PCt)	is	then	equal	to:	

 
 


3

2 1

'
,,, )exp(1

j

S

i
tijtijjt nEqwPC 		 	 	 	 	 	 (S10)	

If	PCt	is	larger	than	TACt,	the	length	of	the	fishing	season	is	reduced	to	a	fraction	zt	(0<	zt	≤1)	so	

that	the	actual	catch	(ACt):	
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where	zt	can	be	computed	numerically	starting	from	the	initial	value:	

t

t
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Otherwise,	if	PCt		TACt	,	then	zt=1	and	ACt	=	PCt.		

If	parameter	wj,	besides	differences	in	weight,	accounts	also	for	differences	in	price	between	size	

classes,	then	ACt	values	can	be	interpreted	as	revenues.	

Fish	abundance	 1,, tijn 	at	the	end	of	the	fishing	season	can	be	computed	as	follows:	
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Reserve	Implementation	

When	a	reserve	is	implemented,	fishing	boats	are	excluded	from	the	protected	patches	and	thus	

fishing	effort	is	set	to	zero	within	the	no‐take	zones	and	fishing	boats	are	redistributed	in	the	

fishable	ground	according	to	eqs.	S7	and	S8	Following	on	Hilborn	et	al.’s	[2]	result	that	in	order	to	

maintain	population	abundances	TAC	may	need	to	be	recalculated	based	only	on	the	fraction	of	

the	population	that	can	be	fished,	instead	of	the	total	population	inside	and	outside	the	marine	

reserve,	we	calculate	TAC	in	two	alternative	ways.	In	the	first	case,	TAC	is	computed	with	eq.	S9	

as	a	fraction	of	the	total	biomass	inside	and	outside	reserves.	In	the	second	case,	eq.	S9	is	

modified	so	that	TAC	is	computed	only	on	the	biomass	outside	reserves.		

	

	

Environmental	Stochasticity.	

Environmental	variability	and	uncertainty	in	parameter	estimation	were	explicitly	accounted	for	

in	the	model.	We	simulated	environmental	stochasticity	with	two	alternative	assumptions	on	the	

probability	distribution	function	used	to	draw	values	of	model	parameters	at	each	time	step:		

1) following	Stefansson	and	Rosemberg	[3],	we	used	a	bias‐corrected	longnormal	

multiplicative	error		for	the	model	parameter	mp	reported	in	Table	1	–	including	fishery	

parameters	‐		namely	mps	=	mpm·exp(mp‐mp2		/2)	where	mpm	the	mean	expected	value,	mp	

is	a	normal	deviate	with	mean	zero	and	standard	deviation	mp		and	the	parameters	

bounded	between	0	and	1	(such	as	annual	survival	and	transition	probabilities)	log	

transformed	to	compute	instantaneous	rates	before	multiplying	them	with	the	lognormal	

multiplicative	error,	and	then	back	transformed	in	their	natural	scale.		mp	was	calibrated	

so	that	model	parameters	were	characterized	by	30%	coefficient	of	variation.		

2) In	the	alternative,	we	run	simulations	by	using	a	truncated	beta	distribution	with	mean	

corresponding	to	the	value	of	model	parameters	reported	in	Table	1,	minimum	and	

maximum	value	equal	to	50%	of	the	mean	value	and	coefficient	of	variation	set	to	30%	

for	all	model	parameters	(unless	reported	otherwise	in	Table	1).		The	minimum	and	



maximum	range	of	variation	for	survival	in	size	classes	1,	2	and	3	were	identified	by	log	

transforming	survivals	so	as	to	guarantee	that	random	deviates	were	bounded	between	0	

and	1.	To	simulate	uncertainty	in	stock	assessment	and	year‐to‐year	variability	in	fishery	

operations,	we	used	a	truncated	beta	distribution	also	to	draw	annual	values	of:	the	

catchability	coefficients	qj,	the	degree	of	effort	aggregation	,	and	the	fishable	biomass	in	

size	classes	2	and	3	used	to	derived	the	TAC	(coefficient	of	variation	set	to	30%	for	all	

these	parameters).	

 

While	the	actual	value	of	the	metrics	used	to	assess	fishery	performance	under	different	

management	regimes	obviously	changed	depending	upon	the	approach	used	to	simulate	

environmental	stochasticity	(namely,	a	bias‐corrected	longnormal	multiplicative	error		vs	a	

truncated	beta	distribution),	the	trends	in	fishery	performance	as	a	function	of	protection	level	of	

the	fishing	ground,	number	and	size	of	MRs,	dispersal	distance	in	the	larval	or	juvenile/adult	

phase,	incremental	gain	in	reproductive	output	of	large	spawners,	fishing	mortality	used	to	

compute	the	TAC,	Goodyear	compensation	ratio,	etc.	were	not	affected	by	the	choice	of	the	

distribution	function	used	to	draw	values	of	model	parameters	for	the	stochastic	simulations.	

Therefore,	we	reported	the	results	obtained	by	using	a	truncated	beta	distribution.	

	

Values	of	model	parameters	were	drawn	each	year	from	their	respective	probability	distribution	

function	and	the	same	sequence	of	year‐to‐year	environmental	variability	in	the	demographic	

parameters	was	used	to	simulate	population	dynamics	under	conventional	quota	management	

and	MR	implementation.						

For	each	management	scenario,	we	set	the	initial	population	density	to	the	value	corresponding	

to	a	population	managed	with	a	conventional	TAC‐regulated	fishery	(no	MPA)	at	MSY.	As	in	this	



specific	study	we	were	interested	in	assessing	long	term	fishery	performances	and	contrasting	

them	with	that	of	Hilborn	et	al.	(2006)	and	other	theoretical	studies,	after	MRs	were	

implementated	we	run	the	model	for	additional	70	year	burn‐in	period	and	then	assessed	

population	performance	over	a	10		year	period	replicated	500	times.	Because	high	year	to	year	

variability	may	mask	differences	in	fishery	performance	(see	Table	S2,	Fig.	S4‐5),	we	computed	

the	mean	catch	and	stock	biomass	over	a	10	year	period	for	each	management	scheme	and	then	

computed	the	fraction	of	time,	over	500	replicates,	in	which	catch	(stock	biomass)	under	MRs	

implementation	was	larger	or	smaller	than	MSY	(stock	biomass	at	MSY)	under	conventional	

quota	management.	Results	for	the	MRs	fishery	management	regimes	were	reported,	unless	

stated	otherwise,	as	relative	increase	(when	positive)	or	decrease	(when	negative)	of	mean	catch	

and	mean	stock	biomass	over	the	10	year	interval	with	respect	to	the	same	metrics	for	a	

conventional	TAC‐regulated	fishery	(with	no	MRs).	

Simulation	results	were	used	also	to	compute	quasi‐extinction	probabilities	and,	specifically,	the	

probability	that	the	population	drops	below	10%	or	20	%	the	unfished	carrying	capacity	(here	

taken	as	thresholds	for	population	collapse	and	decline	respectively,	the	latter	coinciding	with	

the	limit	reference	point	for	most	fisheries	under	management	in	the	developed	world)	in	a	10	

year	period.	

	
	 	



Appendix S2: Derivation of the stock-recruitment parameters of 
larval survival as a function of population carrying capacity and 
the Goodyear compensation ratio 
 

Here we show how the parameters 0Maxand  of the stock-recruitment relationship L(L)  describing 

larval survival, settlement and recruitment in stage n1 can be derived for any assigned value of 

population carrying capacity K at the unfished equilibrium and the Goodyear compensation ratio GCR. 

The general model describing the dynamics of an unfished population is the follows:  
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At the long-term equilibrium, nj,t+1 = nj,t  = nj  (j=1,2,3) and the population reaches a stable stage 

distribution with: 
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In addition, at the long term equilibrium  n1 + n2 + n3 = K, where K is the unfished carrying capacity. 

Therefore, given K, we can derive n1 as follows: 
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and, then, compute n2 and n3  accordingly. 

 

We can now compute the abundance of larvae Leq at the long term equilibrium, namely: 

333211 nnnLeq    



The value of larval survival at the long term equilibrium is computed from the equation describing the 

dynamics of the first size class n1, namely:  
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According to Walters et al. (2007), the Goodyear compensation ratio is the ratio of maximum larval 

survival at low density (0Max) to survival at un-fished natural abundance, i.e. L(Leq). As larval 

survival is describe by the Beverton-Holt function, it follows that: 
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Therefore, given the values of GCC and K, we can derive  as follow: 
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we can solve this equation for	0Max, namely:	
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Appendix S3: Size-fecundity relationship 
 
According	to	Fishbase	(www.fishbase.org),	the	ratio	between	maximum	length	and	length	at	

sexual	maturity	for	several	rockfish	species	(such	as	Canary,	Bocaccio,	Cowcod	fish,	Darkblotched	

rockfish,	Pacific	Ocean	Perch)		as	well	invertebrates	(such	as	the	abalone	spp.),	typically	ranges	

between	1.5	and	2.5	with	a	mean	around	2.	For	some	species,	such	as	the	California	spiny	lobster,	

this	ratio	can	be	substantially	larger,	as	maximum	length	(about	30	cm)	is	five	times	the	size	at	

sexual	maturity	(between	60‐80mm).	Assuming	that	fecundity	(that	is	usually	proportional	to	

body	mass)	scales	allomerically	with	body	length	to	the	power	3	(and	in	some	cases	substantially	

more,	for	instance:	5.68‐6.24	for	haddock	Melanogrammus	aeglefinus	[4];	5.28	for	spanish	flag	

snapper	Lutjanus	carponotatus	[5];	4.37	for	the	Atlantic	cod		Gadus	morhua	[6],	3.16	for	southern	

rock	lobster	Jasus	edwardsii	[7]),	the	fecundity	of	an	old,	larger	individual	can	be	from	5	to	60	

times	larger	than	the	individual	of	the	same	species	at	size	of	sexual	maturity.	For	green	and	pick	

abalone,	for	instance,	fecundity	increases	linearly	with	body	mass	[8,9]	and	body	mass	increases	

with	L3.36	for	Haliotis	fulgens	and	L3.50	for	Haliotis	corrugata	[10]:	therefore,	doubling	abalone	

length	from	size	at	sexual	maturity	to	that	of	a	large	spawner	implies	a	ten‐fold	increase	in	per‐

capita	fecundity	from	ca.	800	thousand	to	ca.	8.2	million	eggs	[11]. 
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Table S1  
Coefficient of variation of the long term population and catch measured in biomass (unless stated 
otherwise). Model parameterized as in Table 1  with 50 km larval dispersal (retention rate 3%) and 1 
km juvenile/adult dispersal (retention rate 90%), fishing effort TE = 3TEMSY and fishing mortality f = 
fMSY =qEMSY ; in the MR regime, 36% of habitat is protected and divided in 4 marine reserves of 9 km 
each. 
	

	

	
	 	 Year	to	year	

coefficient	of	
variation	

Coefficient	of	variation	of	
cumulated	catch	and	mean	
biomass	over	a	10	year	

period	replicated	500	times	

Long	term	unfished	population	
	

	 Biomass		 25% 19%	
	 Abundance	 28%	 21%	
	 	 	
Yield	 	 	
	 Conventional	quota	management	(MSY) 52% 30%	
	 TAC	computed	on	the	whole	stock	 46%	 25%	
	 TAC	computed	only	on	the	stock	outside	
MRs	 48%	 25%	

	 	 	 	
Stock	[Biomass]	for	a	harvested	population 	
	 Conventional	quota	management	 33%	 25%	
	 TAC	computed	on	the	whole	stock	 28%	 19%	
	 TAC	computed	only	on	the	stock	outside	
MRs	

26%	 18%	

	
	
	 	



Table S2 
Results	of	sensitivity	analyses	investigating	effects	of	different	assumptions	on	the	fish	mortality	used	to	
set	the	TAC,	the	range	of	fish	dispersal	(rd)	and	the	number/size	of	MRs	and	level	of	protection	in	the	case	
of	adult	dispersal.	Results	are	reported	as	%	increase	of	decrease	with	respect	to	conventional	quota	
management.	The	reference	case	(RC)	corresponds	to	the	model	parameterized	as	in	Table	1,	with	50	km	
larval	dispersal	(retention	rate	3%),	all	the	other	parameters	as	in	Table	1.	In	the	reference	case, fishing 
mortality f = fMSY  =qEMSY; 36% of habitat is protected and divided in 4 marine reserves of 9 km each, 
adult dispersal rate is 1km (90% retention).		The	outcome	corresponding	to	the	reference	case	is	reported	
in	Italic.		
	
a)	Sensitivity	analysis	on	fishing	mortality	
	
	 	 			 	
	 	 Biomass	(%)	±	S.D.	 Catch	(%)	±	S.D.						 Biomass	(%)	±		S.D.	 Catch	(%)	±	S.D.	
f	=	0.8fmsy						 17.96		±			6.40**		 15.67		±		7.29**	 47.81	±	9.36**		 ‐18.34		±			5.26	*	
f	=	fmsy						 33.94		±	11.40**		 19.71		±		11.37**			 65.83	±	15.06**					 ‐10.00		±			8.45	n.s.	
f	=1.25fmsy		 63.73		±		23.04**			 31.62		±	18.79**				 97.58	±	28.45**						 				5.59		±	15.52	n.s.	
f	=1.50fmsy		 100.5		±		38.89**	 48.61		±	30.39**		 135.6	±	46.47**	 		25.07	±	25.66	n.s.	
	
b)	Sensitivity	analysis	on	fish	movement,	i.e.	the	range	of	dispersal	rd	of	90%	of	the	larvae	
	
	
	 	 Biomass	(%)	±	S.D.	 Catch	(%)	±	S.D.						 Biomass	(%)	±	S.D.	 Catch	(%)	±	S.D.	
rd	=				1	km	 33.94		±	11.4**		 19.7			±	11.37**	 65.83	±	15.06**	 ‐10.0			±	8.45	n.s.	
rd	=				5	km	 14.40		±	5.69**			 11.8			±			5.59**			 54.37	±	12.13**			 ‐		7.75	±		7.43	n.s	
rd	=		10	km			 		6.38		±	2.76**			 		6.13	±			2.70**			 47.86	±10.61**		 ‐		6.26	±		6.91	n.s.	
rd	=		15	km	 		4.14		±	1.80**			 		4.29	±			1.79**			 45.45	±	10.18**	 ‐		5.28	±		6.7	n.s.	
rd	=		20	km	 		3.29		±	1.50**			 		3.50	±			1.47**			 44.81	±	10.36**		 ‐		4.41	±		7.03	n.s.	
rd	=		25	km	 		1.86		±	0.77	**		 		2.18	±			0.84**			 34.65	±	7.021**		 ‐11.18	±		4.83*	
rd	=		50	km	 		2.14		±	0.90**			 		2.41	±			0.93**	 40.98	±10.83**		 ‐		6.61	±		7.26	n.s.	
rd	=100km	 		4.14		±	2.38**			 		4.29	±			2.34**	 78.32	±52.78**	 		15.9		±34.23	n.s.	
	
	
	
c)	Sensitivity	analysis	on	number	of	marine	reserves	and	level	of	protection	in	the	case	of	fish	
movement	(rd=25	km),	in	addition	to	larval	dispersal	(50km).	Reference	case	has	4	marine	
reserves	
	
	
	 	 Biomass	(%)	±	S.D.	 Catch	(%)	±	S.D.						 Biomass	(%)	±	S.D.	 Catch	(%)	±	S.D.	
4	MPA	36%	 		1.86	±	0.77	**		 2.19	±	0.84**				 34.65	±	7.02**		 ‐11.18	±	4.83*	
3	MPA	36%	 		2.91	±	1.12**		 3.45	±	1.20**				 36.80	±	7.51**			 ‐11.78	±	5.03*	
2	MPA	36%	 		5.13	±	1.96**		 6.03	±	2.05**				 40.95	±	8.47**				 ‐12.96	±	5.38*	
1	MPA	36%		 		8.74	±	4.91**				 7.05	±	5.15ns			 49.28	±10.6**			 ‐17.81	±	5.59**	
1	MPA	30%			 		4.53	±	3.18*						 5.94	±	3.28*			 	 40.63	±	8.85**					 ‐11.74	±	5.35*	
3	MPA	42%							3.95	±	1.56**			 4.31	±	1.64**				 43.23	±	8.77**	 ‐16.53	±	5.34**	

TAC	computed	only	on	stock	outside	MRsTAC	computed	on	the	whole	stock	

TAC	computed	only	on	stock	outside	MRsTAC	computed	on	the	whole	stock	

TAC	computed	only	on	stock	outside	MRsTAC	computed	on	the	whole	stock	



	
d)	Sensitivity	analysis	with	respect	to	different	assumptions	on	the	error	in	stock	assessment	
and	estimation	of	the	TAC	
	
cv(TAC)=15	%					29.62±		9.893			 20.01	±	10.69				 63.58		±13.37			 ‐11.18	±	7.699	
cv(TAC)=30%					33.94		±	11.40**		 19.71		±		11.37**			 65.83	±	15.06**					 ‐10.00		±			8.45	n.s.	
cv(TAC)=40%					34.77	±	13.95				 18.9	±		13.5			 	 64.98	±	17.38			 ‐10.19±		9.592	
	
	 	



	

Fig. S1 
	
	

	
	
	
Fig.	S1	‐	A	schematic	representation	of	the	stage	structured,	spatially	explicit	demographic	model.		
	
	 	



Fig. S2 
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Fig. S2 – Level of significance of the difference between catch with a network of marine reserves 
in a TAC overcapitalized fishery and catch at MSY under conventional management as a function 
of the period of aggregation, significance level of the difference in cumulated catch over 1, 2… 
10 years. The red dashed line corresponds to the canonical significance level at p=0.05. For 
values of p larger than 0.05 the null hypothesis cannot be rejected. Model parameters set as in 
Table 1; larval dispersal range: 50km; adult dispersal range: 1km;  fishing mortality to compute 
the quota equal to fmsy ; total effort TE= 3Emsy; TAC computed over the whole stock inside and 
outside MRs. Significance calculated as the fraction of times, over 500 replicates, in which the n-
year average catch (n=1..10) with MR implementation was larger than the catch averaged on the 
same period for a conventional fishery at MSY. Figure shows that year to year environmental 
variability masks differences in fishery performances between alternative fishery schemes. When 
catches are averaged out over a sufficient number of years, yield of a fishery management scheme 
that includes also MRs is significantly larger than that of a conventional fishery at MSY. 



	

Fig. S3  
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Fig. S3 – a) Distribution of 4 MRs of 9 km each along a 100km coastline (36% protection level). b) 
Spatial distribution of fishing effort along the coastline and c) the distribution of fish stock: the dashed 
line represents case of conventional quota management for an overcapitalized fishery where TE=3Emsy; 
the black line the case of a TAC-regulated fishery where the TAC is computed on the whole stock 
inside and outside MRs; the grey line the case of a TAC-regulated fishery where the TAC is computed 
only on the stock outside MRs. The red dotted horizontal line in panel (b) represents the level of effort 
sufficient to guarantee the maximum sustainable yield. Model parameters as in Table 1 for a population 
with a 50km average larval dispersal and sedentary adults. Fig. S2b clearly shows the “fishing the line” 
phenomenon [12], i.e. effort aggregation at the MR boundaries 
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Fig. S4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S4 – A stochastic realization of population dynamics of the unfished population (panel a, pink line) 
and of catch (panel b) and biomass (panel c). The grey line corresponds to the case of a TAC regulated 
fishery with conventional quota management, the blue dotted line of a TAC regulated fishery with a 
network of 4 MRs on 9 km each where the TAC in computed over the whole stock inside and outside 
MRs; the green line as the previous case but the TAC is computed only on the catch outside MRs. 
Model parameters as in Table 1 for a population with a 50km average larval dispersal, sedentary adults 
and 4 MRs of 9 km each (for a total of 36% of the fishing ground set aside in MRs). 
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Fig. S5 

 
 

 
 
Fig. S5 – Probability density distribution of biomass and catch as derived through stochastic 
simulations corresponding to a model parameterized as in Table 1, 50km larval dispersal distance and 4 
MRs of 9 km each (for a total of 36% of the fishing ground set aside in MRs). 
 
  



Fig. S6 
 
	
		
	
	
	
	
	
	

Fig.	S6	–	Quasi‐extinction	threshold,	i.e.	probability	(vertical	axis)	that	the	population	drops	
below	a	given	density	threshold	(horizontal	axis)	in	a	10	year	period.	Panels	report	the	
results	of	stochastic	simulations	for	increasing	levels	of	fishing	mortality.		Continuous	line:	
conventional	TAC	regulated	fishery(no	MRs);	dotted	line:	TAC	regulated	fishery	where	the	
TAC	is	computed	on	the	whole	stock	inside	and	outside	MRs;	dashed	line:		TAC	regulated	
fishery	where	the	TAC	is	computed	only	on	the	stock	outside	MRs.	The	two	vertical	red	
dotted	lines	identify	threshold	density	for	population	collapse	(10%	of	the	mean	unfished	
carrying	capacity)	and	decline	(20%	of	the	mean	unfished	carrying	capacity).	Model 
parameterized as in Table 1, 50km larval dispersal distance and 4 MRs of 9 km each (for a total 
of 36% of the fishing ground set aside in MRs)	

f = fmsy 

f = 1.25fmsy 

f = 2fmsy 

f = 1.5fmsy 


