Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence

states

List of Authors

Author nº: 1

Name: Gerardo Pulido-Reyes Institution: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Spain Email: gerardo.pulido@uam.es

Author nº: 2

Name: Ismael Rodea-Palomares

Institution: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Spain

Email: ismael.rodea@uam.es

Author nº: 3

Name: Soumen Das Institution: Advance Material Processing Analysis Center and Nanoscience Technology Center, University of Central Florida, Florida 32826, United States Email: <u>soumen.das@ucf.edu</u>

Author nº: 4

Name: Tamil Selvan Sakthivel Institution: Advance Material Processing Analysis Center and Nanoscience Technology Center, University of Central Florida, Florida 32826, United States Email: <u>tselvan06@gmail.com</u>

Author nº: 5

Name: Francisco Leganes Institution: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Spain Email: <u>francisco.leganes@uam.es</u>

Author nº: 6

Name: Roberto Rosal Institution: Departamento de Ingeniería Química, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain Email: <u>roberto.rosal@uah.es</u>

Author nº: 7

Name: Sudipta Seal

Institution: Advance Material Processing Analysis Center and Nanoscience Technology Center, University of Central Florida, Florida 32826, United States // Material Science and Engineering, Collage of Medicine, University of Central Florida, Florida 32826, USA Email: sudipta.seal@ucf.edu

Author nº: 8 (Submitting Author)

Name: Francisca Fernández-Piñas Institution: Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049, Spain Email: <u>francisca.pina@uam.es</u>

Suplementary Table S1 Spontaneous cerium dissolution in the exposure media for all CNPs
was tested by performing ICP-MS analyses of ultrafiltrated samples (10 mg/l).

Sample	Concentration (mg/l)	Stand. Dev
CNP1	0,00045	4.13%
CNP2	0,00001	29.22%
CNP3	0,00081	8.95%
CNP4	0,00003	4.05%
CNP5	n.d.*	-
CNP6	n.d.*	-
CNP7	n.d.*	-

*No detected

Supplementary Figure S1.- Effect of free ion Ce^{3+} on growth of *P. subcapitata*.

Supplementary Table S2.- Summary table of correlation analyses between algal growth inhibition and different tested factors, showing the adjusted R^2 values and their associated *p*-values (ANOVA, F<P). $\alpha = 0.05$ is stablished as significance criterion (marked by asterisks).

Tested factors	R ²	<i>p</i> -value
Surface Ce ³⁺	0.706	0.047*
ζ-Potential	0.693	0.049*
Nominal Size	0.007	0.384
Effective Size	0.152	0.281

Supplementary Figure S2. Box plots which show agal growth inhibition as function of nanoparticle shape (cube: CNP4, rod: CNP3 and sphere: CNP1, CNP2 and CNP5; Figure S2a) and just as function of spheric-shaped nanoceria (CNP1, CNP2 and CNP5; Figure S2b). A one way ANOVA coupled with Tukey's HSD (honestly significant difference) post-hoc test was performed for comparison of means. Statistically significant differences ($\alpha = 0.05$) are marked by asterisks.

Suplementary Table S3.- ζ -potential and effective diameter of CNP1 and CNP2 with the addition of Fe or phosphate.

10 mgL ⁻¹ OECD medium						
	0.1 mM Fe		0.2 mM Phosphate			
Sample Name	ζ-potential (mV)	Effective Diameter (nm)	PDI*	ζ- potential (mV)	Effective Diameter (nm)	PDI*
CNP1	10.15 ± 0.889	787.3	0.979	-19.90 ± 0.557	817.2	0.52 6
CNP2	-15.30 ± 1.9	1073	0.362	-10.14 ± 1.06	450.7	0.57 3

*PDI=Polydispersity index

Supplementary Figure S3.- Detection of H₂O₂ using the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit. Reactions containing 50 µM Amplex® Red reagent, 0.1 U/mL HRP and the indicated amount of CNP1 (a) or H₂O₂ as standard curve (b) were incubated for 30 minutes at room temperature. The fluorescence (excitation 535 nm, emission 595 nm) was measured on a Fluorostar Omega plate reader (BMG LABTECH GmbH, Germany). Background fluorescence, determined for a control reaction (H₂O), has been subtracted from each value.

b

Component	OECD		
Component	mg/L	mM	
NaHCO3	50.0	0.595	
NaNO3			
NH4Cl	15.0	0.280	
MgCl ₂ ·6(H ₂ O)	12.0	0.0590	
CaCl ₂ ·2(H ₂ O)	18.0	0.122	
MgSO4·7(H2O)	15.0	0.0609	
K ₂ HPO4			
KH2PO4	1.60	0.00919	
FeCl3·6(H2O)	0.0640	0.000237	
Na2EDTA·2(H2O)	0.100	0.000269	
H3BO3	0.185	0.00299	
MnCl2·4(H2O)	0.415	0.00210	
ZnCl ₂	0.00300	0.0000220	
CoCl ₂ ·6(H ₂ O)	0.00150	0.00000630	
Na2MoO4·2(H2O)	0.00700	0.0000289	
CuCl ₂ .2(H ₂ O)	0.00001	0.0000006	

Supplementary Table S4.- Composition of the OECD TG 201 medium.