Supplementary information

Table S1. Integrative analysis of KEGG signaling pathways involving miR-17~92, 105~25 and 99a~125b clusters by mirFOCUS.

KEGG ID		KEGG Pathway	Involved miRNAs
hsa05219	4.62	Bladder cancer	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa04350	4.57	TGF-beta signaling pathway	hsa-miR-106b,hsa-miR-125b,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa05220	3.68	Chronic myeloid leukemia	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa05212	3.68	Pancreatic cancer	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa05214	3.65	Glioma	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a
hsa04012	3.04	ErbB signaling pathway	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a
hsa05218	2.65	Melanoma	hsa-miR-125b
hsa00830	2.45	Retinol metabolism	hsa-miR-125b
hsa00980	2.04	Metabolism of xenobiotics by cytochrome P450	hsa-miR-125b
hsa05223	2.03	Non-small cell lung cancer	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-let-7c,hsa-miR-19a
hsa04144	1.93	Endocytosis	hsa-miR-106b,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa00982	1.77	Drug metabolism - cytochrome P450	hsa-miR-125b
hsa05215	1.76	Prostate cancer	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a
hsa04010	1.68	MAPK signaling pathway	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa04115	1.52	p53 signaling pathway	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa04110	1.52	Cell cycle	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa05210	1.49	Colorectal cancer	hsa-miR-106b,hsa-miR-25,hsa-miR-125b,hsa-miR-99a,hsa-let-7c,hsa-miR-19a,hsa-miR-92a
hsa00150	1.43	Androgen and estrogen metabolism	hsa-miR-125b
hsa00040	1.43	Pentose and glucuronate interconversions	hsa-miR-125b
hsa00860	1.43	Porphyrin and chlorophyll metabolism	hsa-miR-125b
hsa00053	1.43	Ascorbate and aldarate metabolism	hsa-miR-125b

Table S2. Ingenuity analysis of predicted pathways for five key

mRNAs.

Signaling pathway	RAC1	NFĸB1	MYC	JUN	CCND1
B cell receptor	+	+		+	
Wnt	+		+	+	+
Toll-like receptor	+	+		+	
Neurotrophin M APK	+	+		+	
ErbB	+		+	+	+
Jak-STAT			+	+	
NOD-like receptor			+		+
Chemokine		+			
p53	+	+			
Adipocytokine					+
RIG-I-like receptor		+			
VEGF		+			
Fc epsilon RI	+				
TGF-beta	+				
GnRH			+		
				+	

5' UCCCUGAGACCCUAACUUGUGA 3'	miR-125b
3' AGGGACTCTGGGATT GA ACACT 5'	antimiR-125b
5' UCCCUGAGACCCUAACUUGUGA 3'	miR-125b
3'AGGGACTC 5'	t-antimiR-125b
5' AACCCGUAGAUCCGAUCUUGUG 3'	miR-99a
3' TTGGGCAT 5'	t-antimiR-99a
5'UGAGGUAGUAGGUUGUAUGGUU3'	miR-let-7
3'ACTCCATC 5'	t-antimiR-let-7

Figure S1.

Figure S2.

Figure S3.

Supplementary Legends

Figure S1. Sequences of anti-miR-125b, t-anti-miR-99a~125b cluster LNAs and seed sequences in the miR-99a~125b cluster.

Figure S2. Genes ranked by node numbers.

The mRNAs differentially regulated by BBR were integrated by R software with gplots package and the top 30 genes were ranked by node numbers.

Figure S3. Confocal localization and delivery of t-anti-mir-125b in comparison with anti-mir-125b.

Anti-mir-125b and t-anti-mir-125b were modified with FITC, and transfected into RPMI-8266 cells. (A) Representative optical sections of FAM-labeled anti-mir-125b immediately post-transfection. (B) Representative optical sections of FAM-labeled t-anti-mir-125b immediately post-transfection. (C) Flow cytometry showed that anti-mir-125b and t-anti-mir-125b-FITC-positive cells were 95.01% and 55.65% of the total, respectively, 24 h post-transfection. These results indicated that t-anti-mir-125b-FITC was detected at high levels and was located mainly in the cytoplasm, but rapidly degraded in comparison with anti-mir-125b-FITC.