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SUPPLEMENTARY MATERIALS

A.1 Data Generation

The simulations reported in Table 1 are based on data generated as(
X
Y

)
∼ N

((
µXD

0

)
,

(
1 0
0 1

))
where case status, D, is a random binary variable with specified P (D = 1).
We chose µX =

√
2 Φ−1(AUCX) so that the AUC for the baseline model was

fixed by design.
Data for Table 2 were simulated asXY1

Y2

 ∼ N
µXD0

0

 ,

1 0 0
0 1 0
0 0 1

 .

Data for Table 3 were generated from the distribution(
X
Y

)
∼ N

((
µXD
µYD

)
,

(
1 0
0 1

))
where µX =

√
2Φ−1(AUCX) and µY =

√
2Φ−1(AUCY ).

A.2 Net Benefit is a Proper Scoring Statistic

Let X denote the available predictors and let r∗(X) and r(X) be two functions
of X. Assume that the true model is P (D = 1|X) = r(X) and the aim is to
assess the decision rule based on the model r∗(X) defined by r∗(X) ≥ t. The
standardized net benefit statistic at threshold t associated with the function
r∗(X) is

SNB(t, r∗(X)) = P (r∗(X) ≥ t|D = 1)− 1− ρ
ρ

t

1− t
P (r∗(X) ≥ t|D = 0)

where ρ = P (D = 1). In terms of expectation over the marginal distribution
of X, we write

ρSNB(t, r∗(X)) = E

{
I(r∗(X) ≥ t,D = 1)− t

1− t
I(r∗(X) ≥ t,D = 0)

}
= E

{
P (D = 1|X)I(r∗(X) ≥ t)− t

1− t
[1− P (D = 1|X)]I(r∗(X) ≥ t)

}
= E

{
I(r∗(X) ≥ t)[r(X)− t

1− t
(1− r(X))]

}
= E

{
I(r∗(X) ≥ t)[r(X)− t

1− t
]

}
.
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Now consider the difference between ρSNB(t, r(X)) and ρSNB(t, r∗(X)) :
ρ(SNB(t, r(X))−SNB(t, r∗(X))) = 1

1−tE{(r(X)−t)(I(r(X) ≥ t)−I(r∗(X)) ≥
t))}

The entity inside the expectation, namely

(r(X)− t){I(r(X) ≥ t)− I(r∗(X) ≥ t)} (A.1)

is non-negative with probability 1. To see this, consider the various cases pos-
sible: (i) r(X) = t; (ii) r(X) > t, r∗(X) ≥ t; (iii) r(X) > t, r∗(X) < t (iv)
r(X) < t, r∗(X) < t and (v) r(X) < t, r∗(X) ≥ t and observe that A.1 is ≥ 0
in each case. Therefore the expectation is nonnegative. In other words,

SNB(t, r(X))) ≥ SNB(t, r∗(X))

for every function r∗(X). That is, SNB(t, r∗(X)) is maximized by r∗(X) =
r(X), the true risk function.

A.3 Supplementary Figures and Tables

Table A.1 This table adds standard errors (in parentheses) to the information shown in
Table 1.

One Uninformative Marker

Simulation Scenario
Performance Increment ×100

Average (standard error)

ρ = P (D = 1) AUCX N-training N-test NRI ∆ROC(0.2) ∆AUC ∆Brier ∆SNB(ρ)
0.1 0.6 250 25,000 0.27(0.09) −1.70(0.09) −1.28(0.08) −0.044(0.002) −1.85(0.12)
0.1 0.7 250 25,000 1.38(0.16) −1.37(0.07) −0.86(0.05) −0.049(0.002) −1.31(0.07)
0.1 0.8 250 25,000 3.22(0.28) −0.90(0.05) −0.48(0.02) −0.058(0.003) −0.80(0.04)
0.1 0.9 250 25,000 7.72(0.52) −0.52(0.03) −0.25(0.01) −0.066(0.003) −0.57(0.03)
0.5 0.6 50 5,000 0.57(0.15) −1.67(0.12) −1.19(0.11) −0.479(0.023) −1.69(0.15)
0.5 0.7 50 5,000 2.78(0.28) −2.59(0.12) −1.69(0.08) −0.540(0.024) −2.49(0.13)
0.5 0.8 50 5,000 6.56(0.47) −1.83(0.09) −1.00(0.05) −0.492(0.022) −1.62(0.08)
0.5 0.9 50 5,000 17.09(0.91) −1.11(0.05) −0.56(0.03) −0.433(0.021) −1.17(0.06)



3

Table A.2 Average values of the NRI (%) in a test set with 5,000 observations (ρ =
0.5) when risk models are fit in training sets of various sizes and with various numbers of
covariates. Settings where the ratio of the training set sample size to the number of predictors
is fixed at 25 are highlighted. The markers (Y1, . . . , Y5) are not predictive so the NRI= 0
for the true risk models. Results are based on 1,000 simulations per scenario.

AUCX Size for Training Data (X,Y1) (X,Y1, Y2, Y3) (X,Y1, Y2, Y3, Y4, Y5)

0.70 50 2.3 4.8 6.5
0.70 100 1.4 3.4 4.6
0.70 150 1.3 2.8 3.7
0.80 50 7.0 13.3 17.2
0.80 100 4.4 8.8 11.9
0.80 150 3.5 7.5 10.1

Table A.3 Estimated performance in the same simulation scenarios considered in Table 1.
Here we contrast average estimates calculated in the training data with those calculated in
the independent validation data.

Simulation Scenario Average Performance Increment (%)
Row in Table 1 NRI ∆ROC(0.2) ∆AUC ∆Brier ∆SNB(ρ)

Train Test Train Test Train Test Train Test Train Test

1 13.61 0.27 2.26 −1.70 1.81 −1.28 0.041 −0.044 2.55 −1.85
2 14.30 1.38 1.24 −1.37 0.77 −0.86 0.046 −0.049 1.19 −1.31
3 16.16 3.22 1.19 −0.90 0.46 −0.48 0.056 −0.058 0.94 −0.80
4 18.90 7.72 0.54 −0.52 0.26 −0.25 0.059 −0.066 0.62 −0.57
5 17.45 0.57 4.19 −1.67 2.77 −1.19 0.437 −0.479 3.99 −1.69
6 19.80 2.78 3.13 −2.59 1.69 −1.69 0.486 −0.540 2.62 −2.49
7 23.14 6.56 1.78 −1.83 0.94 −1.00 0.426 −0.492 1.18 −1.62
8 31.36 17.09 0.94 −1.11 0.56 −0.56 0.391 −0.433 1.12 −1.17
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Fig. A.1 Scatterplots showing the relationship between the ∆ROC(0.2) statistic (×100)

and β̂1 − α̂1 in 1000 simulated datasets generated according to the scenario shown in the
second to last row of Table 1. The coefficients are calculated by fitting the models logitP (D =
1|X) = α0 + α1X and logitP (D = 1|X,Y ) = β0 + β1X + β2Y to the training data. The
∆ROC(0.2) is calculated using the test dataset.
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Fig. A.2 Scatterplots showing the relationship between the ∆SNB(ρ) statistic (×100) and

β̂1− α̂1 in 1000 simulated datasets generated according to the scenario shown in the second
to last row of Table 1. The coefficients are calculated by fitting the models logitP (D =
1|X) = α0 + α1X and logitP (D = 1|X,Y ) = β0 + β1X + β2Y to the training data. The
∆SNB(ρ) is calculated using the test dataset.
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Fig. A.3 Scatterplots showing the relationship between the ∆AUC statistic (×100) and

β̂1− α̂1 in 1000 simulated datasets generated according to the scenario shown in the second
to last row of Table 1. The coefficients are calculated by fitting the models logitP (D =
1|X) = α0 + α1X and logitP (D = 1|X,Y ) = β0 + β1X + β2Y to the training data. The
∆AUC is calculated using the test dataset.
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Fig. A.4 Scatterplots showing the relationship between the ∆Brier statistic (×100) and

β̂1− α̂1 in 1000 simulated datasets generated according to the scenario shown in the second
to last row of Table 1. The coefficients are calculated by fitting the models logitP (D =
1|X) = α0 + α1X and logitP (D = 1|X,Y ) = β0 + β1X + β2Y to the training data. The
∆Brier is calculated using the test dataset.
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