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1 Laplace transform of transition probabilities for a general BDP

Here we provide expressions for the Laplace transform of the transition probability Pmn(t) for any
m,n ≥ 0, based on Crawford and Suchard (2012), who provide detailed derivations and a numerical
method for inverting the Laplace transforms to obtain time-domain transition probabilities. Before
stating the main result, we establish some notation. Consider the Laplace transform of P00(t),

h00(s) =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

s+ λ2 + µ2 − · · ·

. (1)

Define the partial numerators in (1) to be a1 = 1 and an = −λn−2µn−1. Let the partial denomina-
tors be b1 = s+ λ0 and bn = s+ λn−1 + µn−1 for n ≥ 2. Then (1) becomes

f00(s) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·

. (2)

A more compact representation of this continued fraction is

f00(s) =
a1
b1+

a2
b2+

a3
b3+
· · · . (3)

Now the kth approximant of f00(s) is the truncated continued fraction

f
(k)
00 (s) =

a1
b1+

a2
b2+
· · · ak

bk
=
Ak(s)

Bk(s)
. (4)

where Ak(s) and Bk(s) are the kth partial numerator and denominator of the continued fraction
(2).
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Theorem 1 The Laplace transform of the transition probability Pm,n(t) is given by

fm,n(s) =



 m∏
j=n+1

µj

 Bn(s)

Bm+1(s)+

Bm(s)am+2

bm+2+

am+3

bm+3+
· · · for n ≤ m,

n−1∏
j=m

λj

 Bm(s)

Bn+1(s)+

Bn(s)an+2

bn+2+

an+3

bn+3+
· · · for m ≤ n,

(5)

where an, bn, and Bn are as defined above (Murphy and O’Donohoe, 1975; Crawford and Suchard,
2012).

2 Full posterior

Let X and Y be the collection of all true and reported counts respectively for all subjects and
timepoints. Likewise, let Z and W be the collection of all subject- and timepoint-specific covariate
vectors, and let α and β be the corresponding fixed and random effects. The posterior density falls
out as

p(α,β,θ,γ,Σβ,X | Y,Z,W) ∝ p(Y | X,θ,γ)p(X | Z,W,α,β)

× Pr(α)p(β | Σβ)p(θ)p(γ) Pr(Σβ)

=

[
N∏
i=1

ni∏
t=1

p(Yit | Xit,θ,γ)p(Xit | Zit,Wit,α,βi)

]
× p(α)p(β | Σβ)p(θ)p(γ)p(Σβ).

(6)

3 Sampling α

The full conditional distribution of α is

Pr(α | X,Y,Z,W,θ,β,Σβ) = Pr(α | X,Z,W,β,Σβ)

∝ Pr(X | Z,W,α,β) Pr(α)

=

[
N∏
i=1

ni∏
t=1

Pr(Xit | Zit,Wit,α,βi)

]
Pr(α).

(7)

Since Xit is distributed according to the GLMM with mean ηit = exp(Witα + Zitβi), there is no
closed-form expression for the full conditional distribution of α in general. Therefore, we specify
a proposal distribution as the normal approximation to the likelihood at the previous value of α
times the conjugate normal prior for α, and we perform a Metropolis accept/reject step to obtain
the next sample of α.

4 Sampling βi

Similarly, the full conditional distribution of βi is

Pr(βi | Xi,Zi,Wi,θ,α,Σβ) ∝ Pr(Xi | Zi,Wi,α,βi) Pr(βi | Σβ)

=

[
ni∏
t=1

Pr(Xit | Zit,Wit,α,βi)

]
Pr(βi | Σβ).

(8)
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We also sample each βi using a Metropolis-Hastings step with a proposal density derived from a
normal approximation as above for α.

5 Sampling θ

The full conditional distribution of θ is

Pr(θ | X,Y,Z,W,α,β,Σβ,γ) ∝ Pr(θ | X,Y,γ)

∝ Pr(Y | X,θ,γ) Pr(θ)

=

[
N∏
i=1

ni∏
t=1

Pr(Yit | Xit,θ,γ)

]
Pr(θ).

(9)

To keep the elements of θ non-negative, we use a truncated normal proposal distribution

θ?` ∼ Normal+

(
θ
(j)
` , σ2θ

)
(10)

centered at the current value θ
(j)
` and where σ2θ is a tuning parameter chosen to optimize mixing

of the chain. Normal+(·) denotes the distribution with density

1√
2πσθ

exp

[
−
(
θ − θ(j)

)2
2σ2θ

]
/
(

1− Φ
(
− θ(j)/σ2θ

))
(11)

for θ > 0 and 0 otherwise, where Φ(·) is the standard normal distribution function. We perform a
Metropolis-Hastings accept/reject step to find the next sample of θ.

6 Sampling γ

The full conditional distribution of γ is similar to that of θ:

Pr(γ | X,Y,Z,W,α,β,Σβ,θ) ∝ Pr(γ | X,Y,θ)

∝ Pr(Y | X,θ,γ) Pr(γ)

=

[
N∏
i=1

ni∏
t=1

Pr(Yit | Xit,θ,γ)

]
Pr(γ).

(12)

To arrive at a valid proposal for γ, we take the monotonicity constraint γ0 < · · · < γJ into account
using a rejection sampling method. We propose a new sample γ∗ from the previous value of γ
using a multivariate Normal kernel:

γ? ∼ Normal
(
γ(j),Σγ

)
(13)

centered at the current value of γ
(j)
` and reject the sample if the constraint is not satisfied. We choose

the tuning parameter Σγ to optimize mixing. We perform an accept/reject Metropolis-Hastings
step to choose the next value of γ.
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