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1 Laplace transform of transition probabilities for a general BDP

Here we provide expressions for the Laplace transform of the transition probability P, (t) for any
m,n > 0, based on Crawford and Suchard (2012), who provide detailed derivations and a numerical
method for inverting the Laplace transforms to obtain time-domain transition probabilities. Before
stating the main result, we establish some notation. Consider the Laplace transform of Py (t),
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A more compact representation of this continued fraction is
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Now the kth approximant of foo(s) is the truncated continued fraction
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where Ag(s) and Bg(s) are the kth partial numerator and denominator of the continued fraction
(2)-
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Theorem 1 The Laplace transform of the transition probability P, ,(t) is given by

forn < m,
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where ay, by, and B, are as defined above (Murphy and O’Donohoe, 1975; Crawford and Suchard,
2012).

2 Full posterior

Let X and Y be the collection of all true and reported counts respectively for all subjects and
timepoints. Likewise, let Z and W be the collection of all subject- and timepoint-specific covariate
vectors, and let a and 3 be the corresponding fixed and random effects. The posterior density falls
out as
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3 Sampling «

The full conditional distribution of a is
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Since Xj; is distributed according to the GLMM with mean n;; = exp(Wya + Z;3;), there is no
closed-form expression for the full conditional distribution of a in general. Therefore, we specify
a proposal distribution as the normal approximation to the likelihood at the previous value of «
times the conjugate normal prior for a, and we perform a Metropolis accept/reject step to obtain
the next sample of .

4 Sampling (3,

Similarly, the full conditional distribution of 3; is
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We also sample each 3, using a Metropolis-Hastings step with a proposal density derived from a
normal approximation as above for a.

5 Sampling 6

The full conditional distribution of @ is
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Pr(0).

To keep the elements of 8 non-negative, we use a truncated normal proposal distribution
p ~ Normal (0, o (10)

centered at the current value Héj ) and where 03 is a tuning parameter chosen to optimize mixing

of the chain. Normal, () denotes the distribution with density
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for § > 0 and 0 otherwise, where ®(-) is the standard normal distribution function. We perform a
Metropolis-Hastings accept/reject step to find the next sample of 6.

6 Sampling v
The full conditional distribution of ~ is similar to that of 6:
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To arrive at a valid proposal for «, we take the monotonicity constraint v9 < --- < -y into account
using a rejection sampling method. We propose a new sample v* from the previous value of ~
using a multivariate Normal kernel:

~* ~ Normal ('y(j), 27> (13)
centered at the current value of %9' ) and reject the sample if the constraint is not satisfied. We choose
the tuning parameter ¥, to optimize mixing. We perform an accept/reject Metropolis-Hastings
step to choose the next value of ~.
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