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Figure S1. Electrophoretic mobility shift assay (EMSA) of mononucleosomes with the indicated peptide and PNA 
constructs. See below for complete description of the binding assays. A. Titration of increasing amounts of PNA 3 
with MNs that include the PNA binding site. The left panel shows the native gel stained with Syber Gold, with the 
PNA-MN complex exhibiting a characteristic gel-shift, whereas the right panel shows the fluorescence of the gel 
(PNA 3 contains a fluorescein moiety). Note the PNA gel-shifted species shows two bands, which is conventionally 
seen with PNA containing complexes. The two bands have been shown to correspond to either a 1:1 binding 

stoichiometry between PNA and MN, or a 2:1 PNA and MN ratio. For a detailed discussion, please see ref. [1] B. 
Left: Native gel electrophoresis (stained with Syber Gold) of PNA constructs 3 and 4 shows binding with MNs that 
include the PNA binding site with the 601 sequence (designated DNAtarget), while MNs which only have the 
conventional 601 sequence (designated DNAWT) show no gel-shift when incubated with the indicated PNA 
constructs. C. Left: Native gel electrophoresis (stained with Syber Gold) of PNA constructs 7 and 8 shows the 
characteristic gel-shift of the nucleosomal band associated with complex formation with MNs. 
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Figure S2. PRC2 methyltransferase assays with MNs using the indicated peptides and PNA constructs, including 
the control MNs that do not incorporate the PNA binding site. Note, this data is an expanded plot of Figure 2 in the 
main text. A. PRC2 activation with MNs containing either the DNAtarget or control mononucleosomes containing 
only the 601 sequence, DNAWT. Data shown is from independent triplicate experiments, with the error bars 
representing standard deviation. B. PRC2 inhibition, with MNs containing either the DNAtarget or control 
mononucleosomes containing only the 601 sequence, DNAWT. Data shown is from independent triplicate 
experiments, with the error bars representing standard deviation.  
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Figure S3. Native gel analysis of 4-mer nucleosome arrays, incubated with the indicated peptide and PNA 
constructs and digested with the appropriate restriction enzymes. See below for complete description of the assays. 
A. Syber Gold visualization of the gel with PRC2 activating constructs, showing the characteristic gel-shift of the 
PNA-MN complex. B. Fluorescence of gel shown in (A), providing evidence that the gel-shifted species 
incorporates the fluorescein-labeled PNA moiety. C. Syber Gold visualization of the gel with PRC2 inhibiting 
constructs, showing the characteristic gel-shift of the PNA-MN complex. D. Fluorescence of gel shown in (C), 
providing evidence that the gel-shifted species incorporates the fluorescein-labeled PNA moiety. 
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Figure S4. PRC2 methyltransferase assays with arrays incorporating the DNAtarget using the indicated peptides and 
PNA constructs. Below are time course experiments using the labeled constructs. Reactions were quenched by the 
spotting on filter paper. See below for full description of the scintillation assays. A. PRC2 activation with arrays 
containing the DNAtarget. Substrates and PRC2 were incubated with indicated construct and 3H-SAM. De novo 
methylation of the array was determined by filter binding followed by scintillation counting. The “array only” 
experiment is normalized to 1. Errors bars = s.d. (n = 3). B. PRC2 inhibition with MNs containing either the 
DNAtarget. Substrates and PRC2 were incubated with indicated construct and 3H-SAM. See below for a detailed 
description of the assay. De novo methylation of the array was determined by filter binding followed by scintillation 
counting. The “array only” experiment is normalized to 1. Errors bars = s.d. (n = 3). 
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Figure S5. PRC2 methyltransferase assays with arrays including native gels, fluorographs and plots of densitometry 
for each of the designated flourographic bands. (A) PRC2 activation and (B) PRC2 inhibition using the indicated 
peptides or PNA constructs. Plots of individual bands of the fluorographs correspond to the various nucleosomal 
species shown (n=3, error bars respresent one s.d.)  The gels shown are additional representative data from that 
shown in Figure 3 of the manuscript. Note that gray rectangles designate lanes removed from the gel.  
 
PNA-DNA Binding 
 
PNAs represent an ideal platform for the sequence specific recognition of the nucleosomal DNA. 
However, as noted in the main text, other molecular systems (such as polyamides) represent additional 
targeting vectors which could be to recognize DNA and display a histone-modifying peptide.  
 
Bis-PNA constructs (also called hairpin PNAs) were chosen because literature precedence[2] has shown 
they can efficiently invade double-stranded DNA, such as the nucleosomal DNA in this study (see, for 
example, ref. [3], [4] as well as references in the main text). Bis-PNAs bind a target polypurine tract, 
usually at least 10 consecutive purine bases, with little other sequence requirements. One PNA strand 
binds via Watson-Crick base pairing while the other PNA strand binds in a Hoogsteen fashion[1], thus 
necessitating the use of two PNA strands connected by a flexible linker. The specific sequence of T5C5 
was chosen for simplicity, although other base sequences could be used. The PNA-dsDNA complex has 
been shown to be quite stable[1], a requirement for the assays used in this study as the PNA-nucleosome 
complexes are subjected to several biochemical steps, and require intact complex for proper 
interpretation. 
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Materials and Methods 

Dimethylformamide (DMF), dichloromethane (DCM), triisopropylsilane (TIS) were purchased from 
Sigma-Aldrich (Milwaukee, WI) and used without further purification. Tris(2-carboxyethyl)phosphine 
hydrochloride (TCEP) was purchased from Thermo Scientific (Rockford, IL). Fmoc amino acids, MBHA 
resin and 2-chloro-trityl chloride (Trityl) resin were purchased from Novabiochem (Darmstadt, Germany) 
or Bachem (Torrance, CA). PNA monomers: Boc-PNA-T-OH and Boc-PNA-C(Cbz)-OH were purchased 
from ASM Research (Fairfax, VA).  2-(7-Aza-1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate (HATU) and O-(Benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium 
hexafluorophosphate (HBTU) were purchased from Genscript (Piscataway, NJ). Fmoc-(R,S)-2-
aminoheptanoic acid was purchased from Anaspec (Fremont, CA) and separated into the respective 
enantiomers as reported previously[5]. Trifluoroacetic acid (TFA) was purchased from Halocarbon (North 
Augusta, SC). All other chemicals were purchased from Sigma-Aldrich (Milwaukee, WI) and used 
without further purification.  

Analytical RP-HPLC was performed on Hewlett-Packard 1100 and 1200 series instruments equipped 
with a C18 Vydac column (5 µm, 4.6 x 150 mm) at a flow rate of 1 mL/min. Preparative RP-HPLC was 
performed on a Waters prep LC system comprised of a Waters 2545 Binary Gradient Module and a 
Waters 2489 UV detector. Purifications were carried out on a C18 Vydac 218TP1022 column (10 µM; 22 
x 250 mm) at a flow rate of 18 mL/min. All runs used 0.1 % TFA (trifluoroacetic acid) in water (solvent 
A) and 90 % acetonitrile in water with 0.1 % TFA (solvent B). Peptides were analyzed on gradients from 
0-50% B in 30 min unless otherwise stated. Electrospray ionization mass spectrometric analysis (ESI-
MS) was performed on a Bruker Daltonics MicroTOF-Q II mass spectrometer. Native gel electrophoresis 
was performed using Bio-rad 5% TBE gels and stained with Syber Gold (Invitrogen). 

 

General Procedures for PNA Synthesis 

Compounds 1, sc1 and sc3 were synthesized manually via Boc SPPS using established procedures with 
slight modifications.[6] To avoid aggregation of the PNA chain during assembly of the oligomer, the 
loading on the MBHA resin was first decreased. In a representative synthesis, 2 g of MBHA resin (initial 
loading 0.56 mmole/g) was reacted with 50 mg (0.28 mmole, 25% of the initial resin loading) of Boc-

Gly-OH, 110 mg (0.28 mmole) HATU and 98 L (0.56 mmole) of DIPEA for one hour at room 
temperature. Following this, any unreacted sites on the resin were capped with acetic anhydride (50 eq. 
Ac2O, 50 eq. DIPEA) for 20 min. A quantitative ninhydrin test was performed to assess the new resin 
loading (three repetitions, using the average). A typical new loading of the resin was established to be 
0.082 mmole/g (~ 15% of the original loading).  

The PNA synthesis was then undertaken using this reduced substitution MBHA resin using the Boc/Cbz 

synthetic protocol (Boc as the temporary -amine protecting group, with Cbz protection of the 
nucleobases). The synthetic protocol used here was based on published procedures[6] with slight 
modifications where highlighted. Note that between each step the resin was washed twice with DMF and 
once with DCM (flow washes, 5 mL for 10 sec.). Removal of the Boc group was accomplished with 95% 
TFA/5% m-cresol (a scavenger is recommended to prevent alkylation of the nucleobases). After 
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deprotection, the resin was washed twice with 5% pyridine/DMF for 1 min to neutralize the resin. 
Coupling was performed using 5 eq. of monomer, 5 eq. of HATU, 5 eq. HOAt and 10 eq. of DIPEA with 
a 5 min. preactivation. After every coupling step, capping was performed using 20 eq. acetic anhydride 
and 20 eq. of DIPEA in DMF for 15 min. When appropriate, the Fmoc group was removed using 20% 
piperidine in DMF. Deprotection of the alloc group on lysine side chains was accomplished with 0.5 eq. 
Pd (tetrakistriphenylphosphine) in the presence of 50 eq. of phenylsilane in DCM (the alloc deprotection 
was repeated three times). PNA compounds were cleaved using 6:1:1:2 TFA/m-
cresol/thioanisole/trifluoromethane sulfonic acid for two hours. The crude products were then precipitated 
in cold ether, pelleted via centrifugation, and the supernatant was removed. After dissolution of the 
product in H2O/ACN and lyophilization, the crude material was purified by either semi-prep or prep RP-
HPLC, and the desired fractions pooled. PNAs were then used in ligations with histone peptides as 
detailed below. All purified PNAs were dissolved in H2O for subsequent use in assays.  

The concentration of the purified PNAs was assessed in two ways, and the average of the two values was 

used. First, UV-Vis measurement using  = 4.0*10^4 mole-1cm-1 at 495 nm was taken (the absorbance of 
the fluorescein moiety) and the concentration was calculated. Next, the absorbance was measured at 254 

nm and the concentration was determined using  = 152 mM-1cm-1, the appropriate extinction coefficient 
for a PNA with the designated composition.[4] The two concentration values were then averaged to arrive 
at a working concentration of the stock solution. Note: the above concentrations were typically within 15-
20% of each other. 

Prior to the use of PNAs in a binding or methyltransferase assay, the working PNA solution was heated to 
50o C for 10 min, and then allowed to cool to room temperature before use. This is a recommended 
procedure to prevent aggregation of PNAs. 

 

General Procedures for Histone Peptide Synthesis 

Peptides 2, 5 and sc2 were synthesized on the 2-chloro-trityl chloride resin to give a C-terminal hydrazide 
which was used as a masked thioester.[7] Peptides were either synthesized using manual addition of the 
reagents (using a stream of dry N2 to agitate the reaction mixture) or on a Liberty Peptide Synthesizer 
equipped with a Discovery microwave module (CEM, Matthews, NC).  

In a representative synthesis, 250 mg of trityl resin (substitution: 1.2 mmole/g, 300 μmoles) was weighed 
into a polypropylene reaction vessel, and swelled in DMF for 20 minutes. A 20-fold excess (relative to 
resin loading) of hydrazine monohydrate (240 uL) was added to 4 mL of DMF. The reaction was then 
bubbled with N2 at room temperature for one hour. The resin was subsequently washed three times with 
DMF and the reaction repeated with a fresh aliquot of hydrazine to ensure quantitative loading. 
Conventional Fmoc solid phase synthesis was then used to assemble the peptide chain using the methods 
outlined below. For acyl hydrazide peptides, the first residue was coupled manually irrespective if manual 
or machine peptide synthesis was used for the remaining residues.  

For manual peptide synthesis, a typical procedure is given here. The Fmoc group was removed with 3 mL 
of 20% piperidine in DMF and performed twice (one deprotection for 30 sec followed by an additional 
deprotection for 15 min). Between each deprotection step, as well as all subsequent synthetic steps, flow 
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washes were used (3 x 5 sec. with DMF). Coupling was performed using 4 eq. of monomer, 4 eq. of 
either HATU or HBTU and 8 eq. of DIPEA with no pre-activation. Double couplings were used for all 
residues to ensure complete acylation. For N-terminal acetylations (when appropriate), the deprotected N-
terminal amine was treated with 15 eq. of acetic anhydride in the presence of 10 eq of DIPEA in DMF, 
and the reaction was allowed to proceed for 20 min.  Cleavages were performed with 95% TFA, 2.5% 
TIS and 2.5% H2O. The peptide was then precipitated with diethyl ether, dissolved in water with 0.1% 
TFA and analyzed via RP-HPLC. Semi-prep or preparative RP-HPLC purification was then used to 
isolate the peptide of interest.  

Purified peptides were then dissolved in water for methyltransferase assays (when needed) and the 

concentration was determined using the UV absorbance of the included tyrosine residue (280nm=1490 M-

1cm-1). 

 

General Method for the Ligation of Peptide Acyl Hydrazides 

The ligation method of Fang et al. (ref [8]) was used with slight modifications. The peptide acyl-hydrazide 
(typically ~2 mM) to be activated as a thioester was dissolved in oxidation buffer (20 mM NaNO2, 6 M 
GnHCl, 0.2 M phosphate buffer, pH = 3) and allowed to react for 30 minutes at 0o C. To form the in situ 
thioester, an equal volume (relative to the oxidation reaction) of 100 mM MESNa, 200 mM thiophenol, 6 
M GnHCl, 0.2 M phosphate buffer pH = 7 was added to the oxidation reaction. The pH was then adjusted 
with NaOH to give a final pH = 7.5 and the reaction mixture was allowed to stand at room temperature 
for 15 minutes to ensure complete conversion to the peptide thioester. Finally, the thioester reaction was 
added to the cysteine containing PNA compound (final concentration of each ligation fragment was 
typically ~ 1 mM). The pH was adjusted to 7.5, and the reaction was allowed to proceed for 3-16 hours at 
RT. After one hour of reaction time, TCEP was added to a final concentration of 20 mM and additional 
aliquots of TCEP were added as required to maintain complete reduction of thiols. During the ligation, a 
pH ~7.5 was always maintained. 

 

Compound 1-8 Analytical Data 

Compound 1. The PNA targeting vector was synthesized according to the general procedure for PNA 
synthesis. The crude material was purified via semi-prep scale RP-HPLC, and the desired fractions were 
analyzed, pooled and lyophilized. RP-HPLC characterization: gradient 0-50% B, tr = 16.4 min. Expected 
Mass: 6616.8 Da. Found: 6616.9 Da. Yield after purification: 28%. See Supplemental Figure S9 for RP-
HPLC chromatogram and mass spec characterization. 

Compound 2. Histone peptide H3.3 21-37 K27me3. Sequence: Ac-ATKAARKme3SAPSTGGVKK-
GYK(Alloc)-NHNH2. Note the C-terminal GYK(Alloc) was appended to the histone sequence, with the 
tyrosine for UV quantitation and the K(Alloc) for further functionalization if needed. The peptide was 
synthesized via the general method for peptide synthesis outline above. The crude material was purified 
via semi-prep scale RP-HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-
HPLC characterization: gradient 0-50% B, tr = 13.9 min. Expected Mass: 2188.3 Da. Found: 2188.3 Da. 
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Yield after purification: 48%.  See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec 
characterization. 

Compound 3. This PNA construct was synthesized by ligation of compounds 1 and 2, using the general 
method for the ligation of peptide hydrazides. The crude material was purified via semi-prep scale RP-
HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC characterization: 
gradient 0-50% B, tr = 17.2 min. Expected Mass: 8776.0 Da. Found: 8776.0 Da. Yield after purification: 
24%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec characterization. 

Compound 4. This PNA construct was synthesized by ligation of compounds 2 and sc1 (see below), 
using the general method for the ligation of peptide hydrazides. The crude material was purified via semi-
prep scale RP-HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC 
characterization: gradient 0-50% B, tr = 18.5 min. Expected Mass: 9412.4 Da. Found: 9412.9 Da. Yield 
after purification: 38%.  See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec 
characterization. 

Compound 5. Histone peptide H3.3 21-37 K27Aha (S-aminoheptanoic acid). Fmoc-S-Aminoheptanoic 
acid was prepared as described previously.[5] Sequence: Ac-ATKAARAhaSAPSTGGVKK-GYK(Alloc)-
NHNH2. Note the C-terminal GYK(Alloc) was appended to the histone sequence, with the tyrosine for UV 
quantitation and the K(Alloc) for further functionalization if needed. The peptide was synthesized via the 
general method for peptide synthesis outline above. The crude material was purified via semi-prep scale 
RP-HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC characterization: 
gradient 0-50% B, tr = 17.3 min. Expected Mass: 2145.2 Da. Found: 2145.3 Da. Yield after purification: 
49%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec characterization. 

Compound 6. This PNA construct was synthesized by ligation of compounds 1 and 5, using the general 
method for the ligation of peptide hydrazides. The crude material was purified via semi-prep scale RP-
HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC characterization: 
gradient 0-50% B, tr = 18.3 min. Expected Mass: 8733.0 Da. Found: 8732.6 Da. Yield after purification: 
29%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec characterization. 

Compound 7. This PNA construct was synthesized by ligation of compounds 1 and sc2 (see below), 
using the general method for the ligation of peptide hydrazides. The crude material was purified via semi-
prep scale RP-HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC 
characterization: gradient 0-50% B, tr = 18.1 min. Expected Mass: 8076.7 Da. Found: 8076.4 Da. Yield 
after purification: 32%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec 
characterization. 

Compound 8. This PNA construct was synthesized by ligation of compounds sc2 and sc3 (see below), 
using the general method for the ligation of peptide hydrazides. The crude material was purified via semi-
prep scale RP-HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC 
characterization: gradient 0-50% B, tr = 18.0 min. Expected Mass: 8076.7 Da. Found: 8076.3 Da. Yield 
after purification: 19%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec 
characterization. 
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Compound sc1. The PNA targeting vector for compound 4 was synthesized according to the general 
procedure for PNA synthesis. This PNA was identical to PNA 1, except that a PEG spacer was included 
between the PNA and the histone peptide 2. The crude material was purified via semi-prep scale RP-
HPLC, and the desired fractions were analyzed, pooled and lyophilized. RP-HPLC characterization: 
gradient 0-50% B, tr = 19.3 min. Expected Mass: 7254.2 Da. Found: 7254.3 Da. Yield after purification: 
34%. See Supplemental Figure S9 for RP-HPLC chromatogram and mass spec characterization. 

Compound sc2. Histone Peptide: H3.1 1-14 K4me3 Sequence: H-ARTKme3QTARKSTGGK-NHNH2.The 
peptide to functionalize PNA compounds 7 and 8 was synthesized according to the general procedure for 
histone peptide synthesis. The crude material was purified via semi-prep scale RP-HPLC, and the desired 
fractions were analyzed, pooled and lyophilized. RP-HPLC characterization: gradient 0-25% B, tr = 10.2 
min. Expected Mass: 1545.9 Da. Found: 1545.6 Da. Yield after purification: 54%. See Supplemental 
Figure S9 for RP-HPLC chromatogram and mass spec characterization. 

Compound sc3. The PNA targeting vector for compound 8 was synthesized according to the general 
procedure for PNA synthesis. This PNA is very similar to PNA 1, but the fluorescein was placed on the 
linker and the cysteine for ligation on the N-terminus (see structure below). This PNA construct also has 
only a single glycine at the C-terminus, while PNA 1 has a Gly-Gly motif at the C-terminus. The crude 
material was purified via semi-prep scale RP-HPLC, and the desired fractions were analyzed, pooled and 
lyophilized. RP-HPLC characterization: gradient 0-50% B, tr = 13.4 min. Expected Mass: 6562.8 Da. 
Found: 6562.7 Da. Yield after purification: 29%. See Supplemental Figure S9 for RP-HPLC 
chromatogram and mass spec characterization. 

 

601 DNA (Mononucleosome) with PNA Binding Site 

The modified 601 DNA sequence (designated DNAtarget below) was prepared by PCR amplification using 
the conventional 601 sequence as a template[9] and the primers shown below. A standard PCR 
amplification was run with the Phusion polymerase (NEB) using the manufacturer’s suggested 
thermocycler program. The PCR product was isolated using a Qiagen PCR-prep kit with water as the 
eluent. The DNA product was then digested with EcoRV to leave blunt ends at each terminus. The 
digested DNA was then purified again using a PCR-prep kit, eluted with water and lyophilized. The DNA 
was then dissolved in a minimal amount of water for mononucleosome assembly (concentration typically 

700-900 ng/L).  

The primers are shown below, with the EcoRV site in green, the PNA target in red. 

Forward Primer: GCATTGGATCCGATATCCTGGAGAATCCCGGT.  

Reverse Primer: GTCGTA AAGCTTGATATCAAAAAGGGGGACAGGATGTATA. 
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4-mer Array (4x 601 DNA) with PNA Binding Site 

A PNA binding site (highlighted in red) was inserted into a derivative of pWM530 containing 4x177 bp 
repeats of the 601 sequence[11] by quick change mutagenesis (Agilent) using primers 
GATTTCAAGCTTGGGCGTAATCAAAAAGGGGGTTATAAATAGTCATAGCTGTTTCCTGTGTG 
and 
CACACAGGAAACAGCTATGACTATTTATAACCCCCTTTTTGATTACGCCCAAGCTTGAAATC. 
The resulting plasmid was produced in E. coli DH5α cells and purified using a Plasmid Giga Kit 
(Qiagen). The 601 repeats were excised via EcoRV/PsiI digestion and purified by PCR purification kit 
(Qiagen). For clarity, a map and the sequence of the 4x601 construct containing the PNA binding site are 
given below.  

   
  ATCCACGCGGTGCCCTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAA  < 75 
  TAGGTGCGCCACGGGACCTCTTAGGGCCACGGCTCCGGCGAGTTAACCAGCATCTGTCGAGATCGTGGCGAATTT 
           10        20        30        40        50        60        70  
 
              >601 A           
              | 
  CGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATAT  < 150 
  GCGTGCATGCGCGACAGGGGGCGCAAAATTGGCGGTTCCCCTAATGAGGGATCAGAGGTCCGTGCACAGTCTATA 
      80        90        100       110       120       130       140  
 
                                >NheI          
                    >ScaI_A          
                    |           | 
  ATACATCCTGTGCATGAGTACTGAGCTCGCTAGCGGCCGCCCTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGG  < 225 
  TATGTAGGACACGTACTCATGACTCGAGCGATCGCCGGCGGGACCTCTTAGGGCCACGGCTCCGGCGAGTTAACC 
           160       170       180       190       200       210       220  
 
                                         >601 B           
                                         | 
  TCGTAGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTC  < 300 
  AGCATCTGTCGAGATCGTGGCGAATTTGCGTGCATGCGCGACAGGGGGCGCAAAATTGGCGGTTCCCCTAATGAG 
      230       240       250       260       270       280       290  
 
                                                     >ScaI_B          
                                                     | 
  CCTAGTCTCCAGGCACGTGTCAGATATATACATCCTGTGCATGTATTGAAGTACTTCTAGCGGCCGCCCTGGAGA  < 375 
  GGATCAGAGGTCCGTGCACAGTCTATATATGTAGGACACGTACATAACTTCATGAAGATCGCCGGCGGGACCTCT 
           310       320       330       340       350       360       370  
 
                                                                    >601 C           
                                                                    | 
  ATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCCCCC  < 450 
  TAGGGCCACGGCTCCGGCGAGTTAACCAGCATCTGTCGAGATCGTGGCGAATTTGCGTGCATGCGCGACAGGGGG 
      380       390       400       410       420       430       440  
 
 
   
  GCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATATATACATCCTGTGCATGTATTG  < 525 
  CGCAAAATTGGCGGTTCCCCTAATGAGGGATCAGAGGTCCGTGCACAGTCTATATATGTAGGACACGTACATAAC 
           460       470       480       490       500       510       520  
 
           >XbaI          
     >ScaI_C          
     |     | 
  AAGTACTTCTAGAGGCCGCCCTGGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCG  < 600 
  TTCATGAAGATCTCCGGCGGGACCTCTTAGGGCCACGGCTCCGGCGAGTTAACCAGCATCTGTCGAGATCGTGGC 
      530       540       550       560       570       580       590  
 
                    >601 D           
                    | 
  CTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTC  < 675 
  GAATTTGCGTGCATGCGCGACAGGGGGCGCAAAATTGGCGGTTCCCCTAATGAGGGATCAGAGGTCCGTGCACAG 
           610       620       630       640       650       660       670  
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Fluorography 

As shown in Scheme S1, the PRC2 reactions of the 4-mer arrays were also analyzed by 3H-fluorography. 
After incubation as detailed above, the radiolabeling was stopped by the addition of >500-fold excess of 

non-radiolabeled SAM. 1 L of the appropriate restriction enzyme was added and the reaction was placed 
at 37oC for one hour. Native gel electrophoresis was used to separate the different species of 
nucleosomes, and the gel was stained and imaged with Syber Gold (Invitrogen). The gel was then 
incubated with Amplify (GE Healthcare) according to the manufacturer’s instructions, dried overnight, 
placed in a cassette with autoradiography film (Carestream BioMax XAR, Kodak) and incubated at -80oC 
for 1-4 days. 

The bands were quantified using densitometry (ImageJ, NIH) and the total densitometry for the “array 
only” experiment was set to 1 for each independent set of assays. All other fluorographic signals were 
then normalized to this value for the histogram plot seen in Figure 3 of the manuscript.
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