Deciphering hepatocellular responses to metabolic and oncogenic stress

Marcelo et al.

Supplementary Information

- **Figure S1**. Percent yield of CD45⁺ liver NPF fraction after MACS and gating strategy for isolation of F4/80⁺ and VE-cad⁺ cells.
- **Figure S2**. Assessment of cell surface marker expression within CD95⁺ fractions of the liver PF via FACS and fluorescence immunohistochemistry.
- **Figure S3**. Assessment of cell surface marker expression within F4/80⁺ fractions of the liver NPF via FACS and fluorescence immunohistochemistry.
- **Figure S4**. Assessment of cell surface marker expression within VE-cad⁺ fractions of the liver NPF via FACS and fluorescence immunohistochemistry.
- **Figure S5**. Effect of metabolic and oncogenic stress on cell number and gene expression of various hepatic cell subfractions.
- **Figure S6**. Comparison of gene expression signature from HFD-treated hepatic cell types to a murine obese liver gene set.
- **Figure S7**. Gene ontological analyses observed between HFD-treated liver cell types and human obese gene set.
- **Figure S8**. Gene ontological analyses observed between DEN-treated liver cell types and human HCC gene set.
- **Table S1**. Anti-mouse antibodies and their respective fluorochrome conjugates used for flow cytometric analysis.
- **Table S2**. Primary antibodies used in immunohistochemical staining of liver sections.
- **Table S3**. List of actual magnifications for histological and cell culture images in each figure.

Supplementary information of this article can be found online at http://www.jbmethods.org/jbm/rt/suppFiles/77.

A. CD45+ Enrichment After MACS

B. CD45+ Fraction

Isotype Controls

Figure S1. A. Comparison of percent yield of CD45⁺ fraction isolated from liver NPF following enrichment via MACS, with or without an FcR block step. **B.** Gating strategy for isolation of F4/80⁺ cells within CD45⁺ fraction (blue gate, top panels), and of VE-cad⁺ cells within CD45⁻ fraction (red gate, bottom panels) from liver. Also shown are representative plots for assessment of contaminating VE-cad⁺ cells (red gate, top panels) within F4/80⁺CD45⁺ macrophage fraction (blue gate, top), and contaminating F4/80⁺ cells (blue gate, bottom panels) within VE-cad⁺CD45⁻ SEC fraction (red gate, bottom panels). The percentage values of contaminating cells, as indicated within each gate, are negligible. FACS plots showing staining using IgG isotype control are also shown.

Figure S2. A. Frequency of antigenic cell surface marker expression by CD95⁺ versus CD95⁻ cells of the liver parenchymal fraction, as determined by flow cytometry. **B.** Proportion of CD95⁺ PH co-expressing select cell surface markers commonly associated with hepatocytes. **C-E.** Fluorescence immunostaining of normal murine liver reveals co-expression of CD95 (red) with the mature hepatocyte markers Albumin (Alb, **C**), cytokeratin 8 (CK8, **D**) and Epithelial Cell Adhesion Molecule (EpCAM, **E**). All scale bars represent 20 μ m.

C. F4/80 CD11b DAPI Merge

Figure S3. A. Distribution of characteristic MΦ surface marker expression on F4/80 $^+$ cells isolated from liver NPF. **B and C.** Immunostaining of murine liver sections demonstrating co-expression of F4/80 with CD45 (**B**) and F4/80 with CD11b (**C**).

B. VE-cad CD31 DAPI Merge

C. VE-cad Flk1 DAPI Merge

Figure S4. A. Distribution of characteristic SEC surface marker expression on CD45- or VE-cadherin+ cells isolated from liver NPF. **B and C.** Immunostaining of murine liver sections demonstrating co-expression of VE-cadherin with CD31 (**B**) and Flk1 (**C**) on cells lining the sinusoids. All scale bars represent 20 mm.

-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2

Figure S5. A and B. Percentages of CD45⁺ **(A)** and CD45⁻ **(B)** cells from liver NPF remain unchanged relative to untreated after HFD or DEN treatment. **C.** Hierarchical clustering of normalized microarray data from replicates of PH, MΦ, and SEC isolated from untreated (UTR), HFD, and DEN-treated liver. **D.** Three-dimensional Principal Component Analysis (PCA) plots of replicates of PH, MΦ, and SEC isolated from liver UTR, HFD-, and DEN-treated mice utilized for microarray. **E.** Comparative global gene expression patterns of PH, MΦ, and SEC co-isolated from the liver of UTR, HFD, and DEN-treated mice. **F and G.** Commonality of altered pathways determined via KEGG Pathways **(F)** and Reactome Pathways **(G)** functional analyses observed between PH, MΦ, and SEC isolated from HFD- and DEN-treated murine liver.

Greenawalt, et al. 2011. Genome Res.

Figure S6. A. Association of gene expression signature of HFD-treated liver PH, MΦ, and SEC with signature derived from murine obese livers [23], via the GSEA method. Of all three cell types, only PH demonstrated a gene expression signature (both upregulated and down-regulated) that matched the murine obese liver signature. **B.** Normalized enrichment scores (NES) of HFD-induced (UP) and HFD-suppressed (DOWN) genes relative to the murine obese liver signature from [23]. **C.** Scatter plots showing correlation of gene expression signature scores between any two of a total of three human obese liver gene data sets [21-22].

Figure S7

Figure S7. Commonality of altered pathways determined via Gene Ontology-Biological Pathways (GO BP) **(A)** and Reactome Pathways **(B)** functional analyses observed between HFD-treated PH, $M\Phi$, or SEC and human obese liver gene signature from [20].

Figure S8. A and B. Commonality of altered pathways determined via Gene Ontology-Biological Pathways (GO BP) (A) and Reactome Pathways (B) functional analyses observed between DEN-treated PH, MΦ, or SEC and human HCC gene signature from [18,19]. **C.** Scatter plots showing correlation of gene expression signatures between [i] DEN-treated PH and human HCC gene set from [18,19]. [ii] DEN-treated PH and human HCC gene set from TCGA-LIHC, and [iii] human HCC gene sets from [18,19] and TCGA-LIHC.

SUPPLEMENTARY TABLES

Supplementary Table 1. Anti-mouse antibodies and their respective fluorochrome conjugates used for flow cytometric analysis.

or flow cytometric analysis. Antigen/Target	Fluorochrome Conjugate	Clone		
Hepatocyte Markers				
CD95	APC	15A7		
Epithelial Cell Adhesion Molecule (EpCAM)	PE-Cy7	G8.8		
c-Kit	PE	2B8		
CD45	eFluor 780	30-F11		
Macrophage Markers				
F4/80	PE	BM8		
CD45	eFluor 780	30-F11		
CD11b	PE-Cy7	M1/70		
CD16/32	AlexaFluor 700	93		
Endothelial Cell Markers				
VE-cadherin	APC, eFluor 450	BV13		
CD31	APC	390		
Flk1	PE	Avas12α1		
CD105	PE	Mj7/18		
CD146	FITC	P1H12		

Supplementary Table 2. Primary antibodies used in immunohistochemical staining of liver sections.

Antigen/Target	Host Species	Clone
CD95	Mouse	15A7
Albumin	Rat	1D6
EpCAM	Rat	G8.8
Cytokeratin 8 (CK8)	Rat	SP2/0
F4/80	Goat	A-19
CD45	Rat	30-F11
VE-cadherin	Goat	NS0
CD31	Rat	MEC 13.3

Supplementary Table 3. List of actual magnifications for histological and cell culture images in each figure.

Figure	Scale bar (µm)	Image Magnification
1A[i]	20	228.6
2B[i]	20	228.6
2B[ii]	20	457.2
2B[iii]	20	457.2
2C[i]	20	228.6
2C[ii[20	228.6
3C[i]	20	317.5
3C[ii]	20	317.5
3C[iii]	20	317.5
3C[iv]	20	317.5
3D[ii]	20	317.5
4C[i]	20	317.5
4C[ii]	20	317.5
4C[iii]	20	317.5
4C[iv]	20	317.5
4E	200	31.75
5C (H&E panels)	20	76.2
5C (IHC panels)	20	152.4