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Supplementary Figure 1. Two possible reaction mechanisms for retaining
glycosyltransferase. (a) Double displacement. This mechanism involves the formation
of a covalently bound glycosyl-enzyme intermediate. (b) Syi-like mechanism. Sni is a
form of Sn1 reaction in which the nucleophile is derived by decomposition of the leaving
group and attacks from the same face. Syi-like mechanism involves the formation of an
oxocarbenium-like intermediate, followed by nucleophilic attack by the deprotonated
hydroxyl from the acceptor toward the anomeric C1 atom of the donor sugar. R, a
nucleoside monophosphate, and R’OH, an acceptor group.
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Supplementary Figure 2. Sequence and structure features of XXYLT1. (a) Sequence
conservation of XXYLT1 extracellular domains among Mus musculus (mXXYLTI,
accession number Q3U4G3), Homo sapiens (WXXYLT1, accession number Q8NBI6) and
Drosophila melanogaster (AXXYLT1, accession number Q9WI1D1). (b) Sequence
conservation between Mus musculus XXYLT1, GXYLT1 and GXYLT2. (¢) The DXD
motif and the Mn*" binding site in XXYLT1. A nearby bound sulfate may mimic the
binding of B-phosphate from donor ligand. The map was generated before modeling the
Mn®" in the active site. The green mesh shows Fo-Fc difference density map contoured at
3.00, and the blue mesh shows 2Fo-Fc map contoured at 1.80.
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Supplementary Figure 3. Gel filtration profile of the mixture of XXYLT1 and Xyl-
Glc-EGF (red) compared with that of the purified XXYLT1 (blue). One profile of
two independent replicates was shown. Inset showed a silver-stained Tricine SDS-PAGE
gel of the 16.5 ml peak of the mixed sample after scale-up sample preparation, showing
the presence of both XXYLT1 and Xyl-Glc-EGF. Note that the three sharp peaks near 2.5
ml, 8 ml, and 21 ml were from instrumental noise due to the reciprocating pumps.



Supplementary Figure 4. Superposition of the apo-XXYLT1 (in magenta cartoon)
and the XXYLT1: Xyl-Glc-EGF binary complex structure (in green cartoon). Only
small conformational changes were detected in XXYLT]1 structure upon Xyl-Glc-EGF
binding, indicating that the EGF-interacting interface in XXYLT]1 is preformed and rigid.
The disaccharide Xyl-Glc- in the acceptor ligand is shown as spheres, and the EGF motif
is shown as semi-transparent gray surface. The disulfide bond between C356 and C385,
the side chains of H262, W265, G325, W359, and W358 around the active site pocket are
shown as sticks. The square box marks a 4-residue loop region (G194-T197) with
notable conformational change, but this region is far away from the donor and the
acceptor ligands.
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Supplementary Figure 5. Crystal contacts in the XXYLT1/Xyl-Glc-EGF binary
complex around EGF moiety. Closest contacts are shown in the zoomed views of
contact areas A and B, where the orange structure is superimposed XXYLT1/Mn**
structure determined in the absence of the acceptor Xyl-Glc-EGF.
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Supplementary Figure 6. Site-directed mutagenesis of XXYLT1 and in vitro activity
assays of the mutant enzymes. (a) The expression of Myc/Hise-tagged wild type and
mutant XXYLT] proteins in transiently transfected HEK293T cells was confirmed by the
Western blot analysis of culture media (top panel) and cell lysates (middle panel) with
anti-Myc monoclonal antibody. The expression of B-actin was used as loading control
(bottom). (b) The xylosyltransferase activities of wild type XXYLT1 against hFA9 Xyl-
Glc-EGF (shown as No Fucose), or hFA9 Xyl-Glc-EGF additionally modified with the
O-fucose monosaccharide (Fucose), or the O-fucose disaccharide (GlcNAc-Fucose) at
S61 of the protein. (¢) Buffer-dependent xylosyltransferase activities of wild type
XXYLTI. In vitro activity was tested under Bis-tris buffer and HEPES buffer. The data
in (b and ¢) were from three independent assays. The bars indicate mean = S.E.M.
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Supplementary Figure 7. The gradual appearance of an alternative UDP
conformation as a proxy for the reaction state. (a) The active site structure of Product
complex II (shown as blue sticks). The yellow dashed lines indicate H-bonds. The black
dashed lines showed shorter-than 3.2 A bump distances between the enzyme and the
transferred xylose, demonstrating a highly stressed local environment. (b) In Product
complex III (shown as salmon sticks), the unbiased Fo-Fc electron density map (30)
revealed two alternating conformations of UDP, likely a result of relieving the steric



stress from the terminal xylose of the final product Xyl-Xyl-Glec. The superposed Product
complex II are shown as blue sticks. (¢) Superposition of the two UDP conformations of
Product complex III (in stick view) into the unbiased Fo-Fc difference densities of UDP-
Xyl Michaelis complex (first panel), Product complex I (second panel), Product complex
IT (third panel), Product complex III (forth panel), UDP-Glc Michaelis complex (fifth
panel), and UDP complex (sixth panel), respectively. The density marked by a circle
gradually developed as the transferring reaction proceeded. The encircled region was
occupied by the a-phosphate in the alternative UDP conformation, which contained full
density in the completion Product complex 111, partial density in Product complex II, less
density in Product complex I, and largely empty in UDP-Xyl Michaelis complex, UDP-
Glc Michaelis complex, and UDP complex. (d) Superposition of the UDP moieties (stick
view) in Product complex I (cyan), Product complex II (blue), Product complex III
(salmon), and UDP complex (orange). As the transfer of xylose from UDP to acceptor
disaccharide proceeded, the pyrophosphate of the UDP moiety gradually moved away
from xylose as indicated by the three black arrows. (e) The pyrophosphate positions in
UDP-Xyl Michaelis complex (green) and UDP-Glc Michaelis complex (magenta) are
closer to the pyrophosphate position of Product Complex I (cyan) than to that of Product
Complex II (blue) and UDP complex (orange), in consistent with their respective
proposed states. Note that the 2.8 A distance (yellow dashed line) between UDP
pyrophosphate and acceptor O3 was significantly shorter than the 3.5 A distance in the
intact UDP-Xyl or 3.6 A distance in UDP-Glc, suggesting that the pyrophosphates of the
intact donor ligands was in a “pressed-down” conformation. The stressed UDP
conformation may facilitate the cleavage of the donor sugar from the pyrophosphate
during the transfer reaction and subsequent departure of the product.



Supplementary Figure 8. Stereo view of the active site structure and transfer
geometry of the UDP-Xyl Michaelis ternary complex. Yellow dashed lines mark H-
bonds. The distances from donor Xyl anomeric carbon to either acceptor Xyl O3
hydroxyl (3.2 A) or Q330 amide oxygen (4.9 A) are marked by black solid and black
dashed lines, respectively. Mn®" is shown as a purple sphere.
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Supplementary Figure 9. Waters are less likely to participate in the transfer
reaction. In the UDP-Xyl Michaelis complex (Green) and UDP-Glc Michaelis
(Magenta), only two waters closest to their anomeric carbons are shown.
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Supplementary Figure 10. Effects of XXYLT1 mutations on XXYLT1 structure
were monitored by intrinsic tryptophan fluorescence. Tryptophan residues were
excited at 280 nm, and fluorescence was recorded over the range of 320-380 nm. One
representative data set from two independent assays was shown.
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Supplementary Figure 11. The expression of Myc/Hise-tagged wild type and selected
cancer-related mutants of XXYLT1 in transiently transfected HEK293T -cells.
Protein expression was confirmed by the Western blot analysis of culture media (top
panel) and cell lysates (middle panel) with anti-Myc monoclonal antibody. The
expression of -actin was used as loading control (bottom).
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Supplementary Table 1. Data collection and structure refinement statistics of the seven XXYLT1-related structures.

Complex
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PDB ID
Data collection
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Cell dimensions:
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Resolution (A)
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I/o(l)
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Resolution (A)
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No. atoms
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Xxylt1:Mn2*
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4WLM

P3,21

89.31, 89.31,154.30
90, 90, 120
40-3.00(3.11-3.00)
12.2 (58.9)

15.6 (2.8)
99.8(99.9)

5.9(6.1)

40-3.00
14806

23.0/28.7

4747

_/2/_

56

-/43/ -

0.006

0.917

Xxylt1:Xyl-Glc
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20.1/23.5

2440
263

45/1/71

37
56

32/27/37

0.008

1.260

Sm3™* derivative

Sm3*

P3,21

91.06, 91.06,153.99
90,90,120

50-3.58 (3.71-3.58)
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Supplementary Table 2. Intrinsic Tryptophan fluorescence features of XXYLT1
and its mutants under 0 M, 2 M and 4 M guanidinium chloride (Gdn).

Proteins OM Gdn 2M Gdn 4M Gdn
340/350 nm A max 340/350 nm A max 340/350 nm A max
WT 1.001 344.8 0.975 347 0.889 356.0
D225N 1.001 344.8 0.972 347 0.869 354.5
D329A 1.000 345.0 0.961 348 0.866 355.5
Q330A 1.034 341.5 0.980 348 0.865 354.0
E225A 0.994 344.0 0.976 347 0.874 355.5
Q257A 0.996 343.5 0.946 349 0.856 354.5
H262A 1.001 344.0 0.972 348 0.859 355.0
W265A 1.023 342.5 0.958 350 0.864 354.5
S289A 1.007 344.5 0.968 347 0.836 354.5
H326A 0.995 3435 0.944 350 0.858 355.0
W358A 1.003 344.5 0.937 350 0.850 355.5
W359A 1.001 345.3 0.960 348 0.874 354.5
N384A 1.004 344.5 0.943 350 0.859 355.5
Q266K 0.975 347.0 0.944 349 0.884 355.5
D319N 0.985 346.5 0.963 349 0.869 356.0
R324S 0.990 346.5 0.969 348 0.868 355.5
G325S 0.987 346.0 0.957 349 0.861 355.5
AVG 1.000 344.6 0.960 348 0.865 355.1
SD 0.014 1.4 0.013 1.1 0.012 0.6




Supplementary Table 3. Compilation of XXYLT1 mutations identified in some
cancers. Gene alteration data are obtained from cancer genomics site: cBioPortal
(http://www.cbioportal.org).

hXXYLT1 Corresponding Cancer types

Mutations residue of mXXYLT1

A121E A120 Lung Adenocarcinoma

S208L S207 Stomach Adenocarcinoma
R236L R235 Lung Adenocarcinoma

F242L F241 Breast Invasive Carcinoma
D243H D242 Lung Squamous Cell Carcinoma
G252S G251 Liver Hepatocellular Carcinoma
Q267K Q266 Breast Invasive Carcinoma
R276W R275 Stomach Adenocarcinoma
G279V D278 Small Cell Lung Cancer

P280S P279 Skin Cutaneous Melanoma
A299S A298 Head and Neck Squamous Cell Carcinoma
R301H R300 Uterine Corpus Endometrial Carcinoma
R308C H307 Breast Invasive Carcinoma
D320N D319 Multiple Myeloma

Y322C Y321 Stomach Adenocarcinoma
R325S R324 Liver Hepatocellular Carcinoma
G326S G325 Stomach Adenocarcinoma
G329R G328 Stomach Adenocarcinoma
H378P H377 Lung Adenocarcinoma

V379l V378 Bladder Urothelial Carcinoma
Y382C Y381 Stomach Adenocarcinoma

D393N D392 Skin Cutaneous Melanoma




Supplementary Table 4. A list of primers used for site-directed mutagenesis

D225N  Forward: 5’-TCCAGCTGAACCTTGACCTGAAGTATAAGACCAAC-3’
Reverse: 5’-GTCAAGGTTCAGCTGGATGATCCTCGGGATC-3’

E255A  Forward: 5’-AGCCAGAGCGATGCAGCCTGTGTACAGGCACAC-3’
Reverse: 5’-GCTGCATCGCTCTGGCTATGCCGATAACAGCGC-3’

Q257A  Forward: 5’-GAGAGATGGCGCCTGTGTACAGGCACACGTTC-3’
Reverse: 5’-ACACAGGCGCCATCTCTCTGGCTATGCCGATAAC-3’

H262A  Forward: 5’-TGTACAGGGCCACGTTCTGGCAGTTCCGCCAT-3’
Reverse: 5’-AGAACGTGGCCCTGTACACAGGCTGCATCTCTCT-3’

W265A  Forward: 5’-ACACGTTCGCGCAGTTCCGCCATGAGAACCCC-3’
Reverse: 5’-GGAACTGCGCGAACGTGTGCCTGTACACAGGCT-3’

Q266K  Forward: 5’-CGTTCTGGAAGTTCCGCCATGAGAACCCC-3’
Reverse: 5’-GCGGAACTTCCAGAACGTGTGCCTGTACAC-3’

N288A  Forward: 5’-CTGGCTTCGCCAGTGGAGTGATGTTGCTGAACCTG-3’
Reverse: 5’-CTCCACTGGCGAAGCCAGGGAGTCCTTCAGGCGG-3’

S289A  Forward: 5’-GCTTCAACGCTGGAGTGATGTTGCTGAACCTGGAGG-3’
Reverse: 5’-TCACTCCAGCGTTGAAGCCAGGGAGTCCTTCAG-3’

D319N  Forward: 5’-CAGCTTGCTAACAAGTACCACTTCCGGGG-3’
Reverse: 5’-GGTACTTGTTAGCAAGCTGCTGTACCCACGA-3’

R324S Forward: 5’-ACCACTTCTCGGGCCACCTGGGGGACCA-3’
Reverse: 5’-GGTGGCCCGAGAAGTGGTACTTGTCAGCAAGC-3’

G325S  Forward: 5’-ACTTCCGGAGCCACCTGGGGGACCAG-3’
Reverse: 5’-CAGGTGGCTCCGGAAGTGGTACTTGTCAGC-3’

H326A  Forward: 5’-TCCGGGGCGCCCTGGGGGACCAGGACTTCTT-3’
Reverse: 5’-CCCAGGGCGCCCCGGAAGTGGTACTTGTCAGCAAGCTGC-3’

D329A  Forward: 5’-CCTGGGGGCCCAGGACTTCTTCACCATGATTGGC-3’
Reverse: 5’-AGTCCTGGGCCCCCAGGTGGCCCCGGAA-3’

Q330A  Forward: 5’-TGGGGGACGCGGACTTCTTCACCATGATTGGCATG-3’
Reverse: 5’-AGAAGTCCGCGTCCCCCAGGTGGCCCC-3’

D331A  Forward: 5’-GGACCAGGCCTTCTTCACCATGATTGGCATG-3’
Reverse: 5’-TGAAGAAGGCCTGGTCCCCCAGGTGG-3’

C356S Forward: 5’-GCAGCTGTCCACCTGGTGGAGGGACCATGGCTA-3’
Reverse: 5’-ACCAGGTGGACAGCTGCCGGTTCCAGGTGCAGT-3’

W358A  Forward: 5’-TGTGTACCGCGTGGAGGGACCATGGCTACAGCGATGT-3’
Reverse: 5’-CCCTCCACGCGGTACACAGCTGCCGGTTCCAG-3’

W359A  Forward: 5’-GTACCTGGGCGAGGGACCATGGCTACAGCGATGTCTTC-3’
Reverse: 5’-GGTCCCTCGCCCAGGTACACAGCTGCCGGTTCCA-3’

N384A  Forward: 5’-ACCATGGGGCCTGCAACACACCCATCCCAGAG-3’
Reverse: 5’-TGTTGCAGGCCCCATGGTAGATCTTGACGTGGCCCT-3’

C385S Forward: 5’-TGGGAACTCCAACACACCCATCCCAGAGGAC-3’
Reverse: 5’-GTGTGTTGGAGTTCCCATGGTAGATCTTGACGTGG-3’

*D329/331A Forward: 5’-CCTGGGGGCCCAGGCCTTCTTCACCATGATTGGC-3’
Reverse: 5’-AGGCCTGGGCCCCCAGGTGGCCCCGGAA-3’

*Double mutant. The second PCR for incorporation of D329A mutation was performed using the plasmid encoding the D331A
mutant as template.



Supplementary Movie 1. A movie morphing the isolated hFA9 EGF (PDB 1EDM) to
the same protein in complex with XXYLT1.

We used the ‘Morph’ function in Chimera to generate the movie coordinates and
displayed the movie in PyMOL. The Xyl-Glc disaccharide in the starting structure was
modeled on the isolated hFA9 EGF structure based on a glucose modified EGF structure
(PDB ID: 4XL1). The disaccharide was modeled away from EGF to prevent the steric
clashes between the apical Xylose and EGF.

Supplementary Movie 2. Morphing (generated using Chimera) of the electron
densities of donor and acceptor substrates of the four trapped ternary complexes.
They are UDP-Xyl Michaelis complex, Product complex I, II and III as labeled in this
movie. We used the unbiased Fo-Fc difference densities calculated before ligands were
modeled. The electron density maps were aligned and displayed at 3.0c in the movie.
Three blue arrows highlight structural features that are consistent with an ongoing
transfer reaction, and the lower left arrow marks the shift of pyrophosphate as described
in the main text.



