Loading does not affect the velocity or spreading rate

Loading can be described by a function $\phi(t)$ which gives the rate of uptake of auxin from the source at time t. We assume that loading is complete after some time τ , so $\phi(t) = 0$ for $t > \tau$, and that the loading function is normalised, so that $\int_0^{\tau} \phi(t) dt = 1$.

We show that the velocity and spreading rate measured after time τ are the same as for instantaneous loading. Suppose the the pulse produced after time t following instantaneous loading is $\psi(x, t)$. We assume the pulse is normalised, in the sense that $\int_{-\infty}^{\infty} \psi(x, t) dx = 1$. We assume the instantaneously loaded pulse function travels at velocity v, so

$$\int_{-\infty}^{\infty} x\psi(x,t)dx = vt,$$
(S1)

and has spreading rate ρ , so

$$\int_{-\infty}^{\infty} (x - vt)^2 \psi(x, t) dx = \rho t.$$
 (S2)

The total pulse at time T after loading with the function $\phi(t)$ is

$$f(x,T) = \int_0^T \psi(x,T-t)\phi(t)dt.$$

Using Eq (S1), the mean of the pulse at time $T > \tau$ is

$$m = \int x f(x,T) dx = v \int_0^T (T-t)\phi(t) dt = v(T-\bar{t}),$$

where \bar{t} is the mean of the loading function. Thus the velocity of the pulse is dm/dT = v, which is independent of the loading function.

The variance is

$$\begin{aligned} \operatorname{var} &= \int_{x=-\infty}^{\infty} (x - vT + v\bar{t})^2 f(x,T) dx, \\ &= \int_{x=-\infty}^{\infty} \int_0^T (x - vT + v\bar{t})^2 \psi(x,T-t) \phi(t) dt dx, \\ &= \int_{x=-\infty}^{\infty} \int_0^T \left[(x - vT + vt)^2 + 2v(\bar{t} - t)(x - vT) + v^2(\bar{t}^2 - t^2) \right] \psi(x,T-t) \phi(t) dt dx, \\ &= (T - \bar{t}) \rho + v^2 \int_0^T (t - \bar{t})^2 \phi(t) dt. \end{aligned}$$

The integral in the second term is the variance of the loading function if $T > \tau$. Thus the only term depending on T is $T\rho$, and therefore the spreading rate dvar/dT is ρ . This is independent of the loading function.