C. Snail population and transmission dynamics

Dynamic variables for the snail component of our model are population densities (per unit habitat) of *x*- susceptible snails; *y*- prepatent infected snails; and *z*-patent infected snails that are shedding *Schistosoma* cercariae; whereby N=x+y+z- total snails. All variables in this scheme represent adult populations, and the relation among them is shown in following SEI diagram

$$\stackrel{\beta}{\longrightarrow} x \underset{v}{\overset{\Lambda}{\underset{(1-c)r}{\longrightarrow}}} y \underset{v}{\overset{cr}{\xrightarrow{}}} z \underset{v}{\overset{\gamma}{\underset{v}{\longrightarrow}}} z \underset{v}{\overset{\gamma}{\xrightarrow{}}} z$$

We assume logistic population growth $\beta = \beta_0 (x + y)(1 - N / K)$, with maximal reproduction rate β_0 and carrying capacity *K*, and fixed snail mortality ν . Only susceptible and prepatent snails (x + y) can reproduce and contribute to growth. The transmission (SEI) part of the system has snail FOI, Λ , determined by the infective human population; prepatency rate r (period 1/r), and patency conversion fraction *c*. The combined population growth-SEI dynamics is described by 3 differential equations

$$\frac{dx}{dt} = \beta - \Lambda x - \nu x + r(1 - c) y$$
$$\frac{dy}{dt} = \Lambda x - (r + \nu) y$$
$$\frac{dz}{dt} = c r y - \nu z$$

Parameter values and ranges for the snail system are given in Table 2. The force of snail infection, Λ , is a nonlinear (saturated) function of the total egg release by the human host population per snail

$$\Lambda = \Lambda_0 \left(1 - \exp\left[-b \,\omega \frac{H \, E}{N} \right] \right) \tag{17}$$

H – host population size, E – mean per capita egg-release by hosts

$$E = E(\rho_0, k_0) = \sum_k \rho_k \phi_k h_k$$
(18)

The key inputs in Λ are sporocyst establishment rate Λ_0 , and transmission coefficient $B = \alpha \beta_M$ (product of miracidium coefficient, β_M , times snail susceptibility, α). In coupled human-snail systems, human FOI $\lambda = a \omega z$, is the product of exposure (contact) rate ω , patent snail density z, and transmission coefficient A that depends on cercarial production/mortality, and the probability of worm establishment in the human host.

Two transmission rates $A = a \omega$; $B = b \omega$ of the coupled system could be estimated from the known demographic and infection data for a given environment.