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Supplemental Methods 

 

Purification of Monocytes 

Centralized training of technicians, standardized protocols, and extensive quality control (QC) 

measures were implemented for collection, on-site processing, and shipment of MESA 

specimens, and routine calibration of equipment was performed.  Blood was initially collected in 

sodium heparin-containing Vacutainer CPTTM cell separation tubes (Becton Dickinson, 

Rutherford, NJ) to separate peripheral blood mononuclear cells from other elements within 2 

hours from blood draw. Subsequently, monocytes were isolated with anti-CD14 monoclonal 

antibody coated magnetic beads, using autoMACS automated magnetic separation unit (Miltenyi 

Biotec, Bergisch Gladbach, Germany).  Initially flow cytometry analysis of 18 monocyte 

samples collected from all four MESA field centers was performed to assess the cell purification 

quality across the labs and technicians. The purity was > 90% for all samples. 

DNA/RNA extraction 

DNA and RNA were isolated from samples simultaneously using the AllPrep DNA/RNA 

Mini Kit (Qiagen, Inc., Hilden, Germany).  DNA and RNA QC metrics included optical density 

(OD) measurements, using a NanoDrop spectrophotometer and evaluation of the integrity of 18s 

and 28s ribosomal RNA using the Agilent 2100 Bioanalyzer with RNA 6000 Nano chips 

(Agilent Technology, Inc., Santa Clara, CA) following manufacturer’s instructions.  RNA with 

RIN (RNA Integrity) scores > 9.0 was used for global expression microarrays. The median of 

RIN for our 1,264 samples was 9.9. 

Epigenome-Wide Methylation Quantification 
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The Illumina HumanMethylation450 BeadChip and HiScan reader were used to perform 

the epigenome-wide methylation analysis. Illumina HumanMethylation450 BeadChip microarray 

was utilized (12 samples per chip).  The EZ-96 DNA Methylation
TM

 Kit (Zymo Research, 

Orange, CA) was used for bisulfite conversation with 1μg of input DNA (at 45 μl). 4 μl of 

bisulfite-converted DNA were used for DNA methylation assays, following the Illumina 

Infinium HD Methylation protocol. This consisted of a whole genome amplification step 

followed by enzymatic end-point fragmentation, precipitation, and resuspension. The 

resuspended samples were hybridized on HumanMethylation 450 BeadChips at 48°C for 16 h. 

To avoid potential biases due to batch, chip, and position effects, a stratified random sampling 

technique was used to assign individual samples (including five common control samples for the 

first 480 samples) to specific BeadChips and chip position.  This methylation data has been 

deposited in the NCBI Gene Expression Omnibus and is accessible through GEO Series 

accession number (GSE56046). 

Quality Control and Pre-Processing of Microarray Data 

Data pre-processing and quality control (QC) analyses were performed in R 

(http://www.r-project.org/) using Bioconductor (http://www.bioconductor.org/) packages. Bead-

level methylation data were summarized in GenomeStudio.  Because the Illumina 

HumanMethylation450 BeadChip technology employs a two-channel system and uses both 

Infinium I and II assays, normalization was performed in several steps using the lumi package 
1
. 

We first adjusted for color bias using “smooth quantile normalization”. Next, the data were 

background adjusted by subtracting the median intensity value of the negative control probes.  

Lastly, data were normalized across all samples by standard quantile normalization applied to the 

bead-type intensities and combined across Infinium I and II assays and both colors. QC measures 

http://www.r-project.org/
http://www.bioconductor.org/
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included checks for sex and race/ethnicity mismatches, and outlier identification by 

multidimensional scaling plots. The final methylation value for each methylation probe was 

computed as the M-value, essentially the log ratio of the methylated to the unmethylated 

intensity 
2
. The M-value is well suited for high-level analyses and can be transformed into the 

beta-value, an estimate of the percent methylation of an individual CpG site that ranges from 0 to 

1 (thus M is logit(beta-value)).  

 The Illumina HumanMethylation450 BeadChip included probes for 485K CpG sites. 

Statistical analyses were limited to CpG sites which passed the following filters: “detected” 

methylation levels <90% of MESA samples using a detection p-value cut-off of 0.05, existence 

of any SNPs within 10 base pairs of the targeted CpG site, or overlap with a repetitive element or 

region.  Pre-processing with global normalization was used to remove large position and chip 

effects across all probes.   

To estimate residual sample contamination for data analysis, we generated separate 

enrichment scores for neutrophils, B cells, T cells, monocytes, and natural killer cells. We 

implemented a Gene Set Enrichment Analysis 
3
 to calculate the enrichment scores using the gene 

signature of each blood cell type in the ranked list of expression values for each MESA sample. 

The cell type-specific signature genes were selected from previously defined lists 
4
 and passed 

the following additional filters: at least four-fold more highly expressed in the targeted cell type 

than in other cell populations and low expression levels in the targeted cells. 

mRNA quantification using RNA-seq 

Total RNA samples were enriched for mRNA, by depleting rRNA using the 

MICROBExpress kit from Ambion and following the manufacturer’s instructions. Poly(A) 
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mRNA was enriched, and Illumina compatible, strand-specific libraries were constructed using 

Illumina’s TruSeq Stranded mRNA HT Sample Prep Kit (Illumina, RS-122-2103). 1 ug of total 

RNA with RIN ≥ 8.0 was converted into a library of stranded template molecules suitable for 

subsequent cluster generation and sequencing by Illumina HiSeq. The libraries generated were 

validated using Agilent 2100 Bioanalyzer and quantitated using Quant-iT dsDNA HS Kit 

(Invitrogen) and qPCR. Six individually indexed cDNA libraries were pooled and sequenced on 

Illumina HiSeq, resulting in an average of close to 30 million reads per sample. Libraries were 

clustered onto flow cells using Illumina’s TruSeq PE Cluster Kit v3 (PE-401-3001) and 

sequenced 2X100 cycles using TruSeq SBS Kit -HS (FC-401-3001) on an Illumina HiSeqTM 

2500. A total of 64 lanes were run to generate approximately 30 million 2 x 101 Paired End 

reads per sample. The Illumina HiSeq Control Software (HCS v2.0.12) with Real Time Analysis 

(RTA v1.3.61) was used to provide the management and execution of the HiSeq 2500.   

Illumina sequencing runs were processed to de-multiplex samples and generate FastQ 

files using the Illumina provided configureBclToFastq.pl script to automate running CASAVA 

1.8.4 using default parameters for removal of sequencing reads failing the chastity filter (yes) 

and mismatches in the barcode read (0). Following generation of FastQ files, reads were trimmed 

to remove poor quality reads (or read tails) using Btrim (5 base sliding window average with Q > 

15) 
5
 and then trimmed to remove any adaptor sequence present in the reads using custom perl 

scripts (trim sequences containing 11 base tag of adaptor, final length >40 bases).  The Ensembl 

GRCh37 Homo Sapiens reference file, annotations and Bowtie2 indexes were downloaded from 

the igenomes.com website (10-Apr-2013) for mapping of the sequencing reads to the genome 

and read counting.   Bowtie2 (2.1.0) and TopHat2 (2.0.8) were used to map the sequencing reads 

to the genome using a mate-inner-distance of 100 bp and ‘firststrand’ options 
6, 7

 .  Following 
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alignment, bam files were merged using the samtools (0.1.19) merge function 
8
, and read counts 

per gene were obtained using HTSeq (0.5.4p3) (http://www-huber.embl.de/users/anders/HTSeq 

/doc/ overview.html). The ‘intersection-strict’ overlap resolution mode and ‘stranded reverse’ 

options were used in HTSeq.  

Data pre-processing and QC analyses were performed in R (http://www.r-project.org/) 

using Bioconductor (http://www.bioconductor.org/) packages. The transcript-based raw count 

data files for each sample from TopHat2 were combined into a count matrix with 56,303 features 

(rows) and 374 MESA samples (columns). The median total count per sample was 28.8 million. 

Reads denoted by TopHat2 as "no_feature","ambiguous", "too_low_aQual", "not_aligned", 

"alignment_not_unique" were removed. Counts were converted to Counts Per Million (CPM) 

using the cpm function of the edgeR package 
9
 , and all features with CPM ≤ 0.25 in ≥90% of the 

374 MESA samples were removed. Features assigned to the mitochondrial genome were 

removed as well. Using the biomaRt package and querying the Ensembl BioMart database, 

Entrez Gene IDs, Gene Symbols, genome coordinates, gene length and percent GC content were 

obtained for 12,585 features which had a corresponding Entrez ID or Illumina HumanHT-12 v4 

probe ID. To be able to continue to use the flexible and computationally efficient linear modeling 

functions in R, we transformed the raw count data to log counts per million (y = logCPM) as 

recommended by Law et al (2013) 
10

: 

 

where cgs is the raw count of gene transcript g in sample s, and Ts is the normalized total count of 

sample s, using the Trimmed Mean of M-values (TMM) normalization method 
11

 as 

implemented in the calcNormFactors function in the edgeR Bioconductor package 
9
. We either 

http://www-huber.embl.de/users/anders/HTSeq%20/doc/%20overview.html
http://www-huber.embl.de/users/anders/HTSeq%20/doc/%20overview.html
http://www.r-project.org/
http://www.bioconductor.org/
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performed only this TMM normalization, or we applied quantile normalization (QN) to the 

logCPM values. Because the logCPM values’ variance tends to decrease with increasing count 

for smaller counts, we used the voom function of the limma package 
12

 to estimate the mean-

variance trend non-parametrically and to predict the residual variance of each individual 

observation for each gene. Then we incorporated the inverse residual variances into the linear 

modeling (lm) as weights in a standard manner. For the logCPM data, we imposed the same low 

variance filter that we had used for the microarray data, removing another 192 features with the 

lowest variance and retaining 12,380 features for analysis. We then performed weighted linear 

model analyses with the otherwise exact same models as for the microarray data. 

Replication study: 

Collection of samples for DNA methylation analysis 

As previously described, liver samples were obtained from the PDAY study 
13

 from a 

subset of the total population, selected for a separate study, which consisted of subjects with the 

lowest 25
th

 (controls) and highest 10
th

 (cases) percentile of non-HDL cholesterol. Samples were 

from 72 European American and 72 African-American males, 15 to 34 years of age, who died of 

violent causes within 72 hours after injury and underwent autopsy in one of the cooperating 

medical examiners’ laboratories. DNA was isolated from liver samples that had been stored at 

−80°C. Five hundred to 700 mg of thawed liver tissues were homogenized with a Dispomix 

Drive (Medic Tools AG, Switzerland) and genomic DNA extracted with a MagneSil Genomic, 

Large Volume system (Promega, USA) process that had been automated on a Freedom EVO 

liquid handler (Tecan, Switzerland). Extracted DNA was quantitated with PicoGreen reagent 

(Molecular Probes, USA) and verified as high molecular weight (>50 Kb) by agarose gel 
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electrophoresis. This study used DNA obtained from liver samples acquired at autopsy. Since all 

study subjects were deceased at the time of study, use of these specimens is not considered 

Human Subjects research. 

DNA methylation analysis 

As previously described 
14

 samples were evaluated using the Illumina 

HumanMethylation450 BeadChip, which assays 485,577 unique CpG sites. The average beta 

(essentially the ratio of the methylated to unmethylated signal) for each site was used to test for 

differences by genotype. Association analysis was performed in the European American and 

African-American samples separately using a generalized linear model (proc glm), as 

implemented in SAS (Cary, NC). Age, chip, and chip position were included in the model as 

covariates. Meta analysis was performed using METAL 
15

, weighting by sample size and 

accounting for direction of effect. 

Measurement of risk factors 

Risk factors were determined and have been previously described in detail 
16, 17

.  Briefly, 

determination of total serum cholesterol and high density lipoprotein cholesterol (HDL-C) was 

accomplished using blood collected at autopsy from the vena cava, heart, or aorta.  Non-HDL-C 

was calculated by subtracting HDL-C from total cholesterol.  Body mass index (BMI) was 

defined as weight (in kilograms) divided by height (in meters) squared.  Glycohemoglobin was 

measured by affinity column chromatography (Helena Laboratories) after a sample of thawed 

cell hemolysate was mixed with hemolysate reagent to ensure complete lysis.  The column was 

an insoluble cellulose resin bound to dihydroxyboryl groups with an affinity for cis diol groups 

present in glucose 
16

.  Smoking status was determined based on the levels of post-mortem serum 
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thiocyanate; a smoker was defined as having a serum thiocyanate level equal to or greater than 

90 μmol/L  
17

.  

Extent of fatty streaks 

The methods for dissection and preservation of arteries have previously been detailed 
13, 

17-19
.  Pathologists, blinded to demographic, clinical, and pathological observations, evaluated the 

right coronary arteries and left halves of the aortas. They visually estimated the extent of intimal 

surface involved with fatty streaks, fibrous plaques, complicated lesions, and calcified lesions by 

procedures developed in the International Atherosclerosis Project
20

. A fatty streak was a flat or 

slightly elevated intimal lesion stained by Sudan IV and without other underlying changes
17

. 

Consensus grading of lesions was the average of independent gradings by three pathologists. 

Statistical analyses 

Tests for associations between extent of fatty streaks and cg05575921 methylation 

measured in hepatic samples were performed using linear regression, including the following 

risk factors:  age, race, lipids (HDL, non-HDL), BMI, and glucose levels.  Analysis included 141 

males aged 17 – 34, 49% African American, 51% Caucasian.   

Reduced Representation Bisulfite Sequencing (RRBS):  

To investigate the relationship between smoking and CpG methylation not captured by 

microarray, RRBS libraries of CD14+ monocytes from two smokers and two nonsmokers were 

generated as previously described 
21

 with minor modifications.  Briefly, samples of 20ul genomic 

DNA (200ng) were spike-in with 1ul (50pg) phage lambda DNA for bisulfite conversion control. 

Samples were digested with Msp I (C^CGG, New England Biolabs, Cat. NO. R0106L) in a 30 ul 
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reaction containing 3 ul 10x NEB buffer 2, 1 ul of MspI (20U/ul) and 5 ul H2O, and incubated at 

37 °C overnight. Digested DNA samples were purified by 2x volume of AMPure XP beads 

(BECKMAN COULTER, Item NO. A63881) followed by end repairing, A-tailing, and indexed 

adapter ligation using TruSeq DNA Sample Preparation Kit v2 (illumina, Cat. NO. FC-121-

2001). Ligated DNA samples were purified with 2x volume of AMPure XP beads followed by 

two consecutive bisulfite conversions using EpiTect Bisulfite kit (48) (Qiagen, Cat. NO. 59104). 

Bisulfite converted DNA samples were purified with 2.5x volume of AMPure XP beads before 9 

cycles of PCR amplification for library generation. After the PCR was completed, PCR primers 

and adapter dimers were removed with 1.2x volume of AMPure XP beads clean-up. To further 

minimize adapter dimers, a second round of clean-up was conducted with 1.5x volume of 

AMPure XP beads. The final library DNA samples were eluted with 32.5 ul resuspension buffer 

from TruSeq DNA Sample Preparation Kit. Libraries were quantified by a Qubit fluorometer 

(Invitrogen, Cat. NO. Q32857). The distribution and concentration of DNA fragments of 

libraries were further examined by running High Sensitivity DNA Chip (Agilent Technologies, 

Kit-Reorder NO. 5067-4626) on Agilent 2100 Bioanalyzer (Cat. NO. G2938C). Four final RRBS 

libraries were pooled together for further QC by running on Illumina MiSeq machine before 

sending for HiSeq run to generate final sequencing data.  

RRBS-seq Processing 

We filtered the raw reads to only include those with a median Phred quality score of 20 

or greater. We used Trim Galore! version 0.2.8 to trim any reads containing adapter sequence. In 

order to avoid counting unmethylated cytosines  that were introduced during the end repair step 

of library preparation, we trimmed off the first two bases of every mate 2 read and trimmed off 

the last two bases of any mate 1 read that had been trimmed of adapter sequence. We aligned the 
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filtered and trimmed reads to the hg19 genome assembly using Bismark version 0.9.0. To avoid 

double counting bases that originated from the same fragment but were present in both paired-

end reads, we trimmed all bases from any mate 2 read that overlapped with its paired mate 1 

read. We extracted the methylation status of all CpGs within the reads, and we assembled a data 

set with the counts of methylated and unmethylated cytosines for each CpG and sample. To 

avoid spurious results due to SNP differences being quantified as methylation differences, we 

eliminated any CpGs that were located at known common SNPs, which were defined as being 

present in dbSNP build 138 at a population frequency of 1% or greater. 

RRBS - DMR Identification 

To identify genomic regions that are differentially methylated (DMRs) between smokers 

and nonsmokers, we used the method described in Ziller et al. 
22

. Briefly, this method first uses 

the methylated and unmethylated counts to identify a set of dynamic CpGs, which are CpGs that 

are significantly differentially methylated between groups. To do this, it uses a model based on 

the beta difference distribution. Next, it merges any dynamic CpGs whose genomic locations are 

close to each other into a set of CpG clusters. Finally, all clusters that are significantly 

differentially methylated between groups are retained as the final set of DMRs. We defined the 

DMR location as the region between the outermost CpGs in the cluster. We excluded any DMRs 

that had fewer than 5 CpGs with nonzero methylation counts, and we also excluded any DMRs 

that had an overall methylation difference of less than 10%. 

RT-qPCR:  

Reverse Transcription Quantitative Polymerase Chain Reaction (RTqPCR) was used for 

replication of AHRR gene expression in CD14+ monocytes from nonsmokers and smokers 
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collected at the NIEHS Clinical Research Unit. CD14+ monocytes were isolated from whole 

blood using CD14+ antibody coated magnetic beads (Life Technologies).  RNA and DNA was 

isolated using the ALLPrep DNA/RNA/miRNA Universal Kit (Qiagen, Catalog # 80224).  

cDNA was generated using the SuperScript® III First-Strand Synthesis SuperMix for qRT-PCR 

(Life Technologies, Catalog# 11752-050). For each individual RNA sample, target and reference 

genes (AHRR and ß-actin) were amplified in triplicate using FAM probes (Life Technologies 

FAM-MGB Catalog # 4331182, AHRR: Hs01005075_m1; ß-actin: Hs01060665_g1) designed to 

span exon junctions using PCR Master Mix (Life Technologies), and ABI 7900HT Realtime 

PCR machine. 
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Supplemental Tables 

Supplemental Table 1:  Association of cg05575921 methylation and other model covariates with carotid plaque score in 472 

current or former smokers  

 Beta Lower CI Upper CI Std. Beta R
2 † t p-value sig 

(Intercept) -1.453 -2.257 -0.650   -3.56 4.16E-04 *** 

cg05575921 methylation -0.127 -0.224 -0.030 -0.13 0.009 -2.58 0.01 * 

Current smoker -0.095 -0.346 0.156 -0.04 0.000 -0.74 0.46  

Pack-years 0.005 0.001 0.008 0.13 0.010 2.71 7.04E-03 ** 

Urine cotinine 8.75E-06 -2.21E-05 3.96E-05 0.03 0.000 0.56 0.58  

Age 0.031 0.023 0.038 0.37 0.105 8.03 8.32E-15 *** 

Gender (male) 0.097 -0.037 0.231 0.06 0.002 1.43 0.15  

Race (AFA) -0.307 -0.493 -0.120 -0.16 0.015 -3.22 1.35E-03 ** 

Race (HIS) -0.113 -0.270 0.043 -0.07 0.002 -1.42 0.16  

BMI -0.004 -0.017 0.008 -0.03 0.000 -0.71 0.48  

LDL cholesterol 0.004 0.001 0.006 0.16 0.016 3.26 1.21E-03 ** 

Diabetes (impaired) 0.039 -0.119 0.197 0.02 0.000 0.49 0.63  

Diabetes (untreated) -0.051 -0.424 0.322 -0.01 0.000 -0.27 0.79  

Diabetes (treated) 0.264 0.084 0.443 0.13 0.012 2.88 4.13E-03 ** 

Hypertension 0.161 0.021 0.301 0.10 0.006 2.26 0.02 * 

Statin use 0.248 0.099 0.397 0.16 0.016 3.27 1.17E-03 ** 

Site 2 -0.116 -0.405 0.172 -0.04 0.000 -0.79 0.43  

Site 3 0.014 -0.171 0.199 0.01 0.000 0.15 0.88  

Site 4 0.081 -0.104 0.265 0.05 0.000 0.86 0.39  

Overall model R
2
 = 0.293; Adjusted R

2
 = 0.265; Residual Std. Error (0.664, df = 453); F statistic 10.419 (df = 18; 453) 

CI, confidence interval; Std. Beta, standardized beta; AFA, African American; HIS, Hispanic  

†
 Calculated as difference in Adjusted R

2
 with and without predictor in the model 

* p < 0.1; ** p < 0.01; *** p < 0.001 
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Supplemental Figures and Figure Legends  

 

 

a         b  

     

       

     

Supplemental Figure 1.  DNA methylation of cg05575921 in monocytes compared to self-

reported pack-years in current and former smokers.  Methylation (y-axis) of the AHRR CpG 

dinucleotide cg05575921 (chr5:373,378; hg19) significantly declines with cumulative smoking 

exposure (x-axis: pack-years) in (a) current smokers (cor = -0.34, 95% CI: -0.50  – -0.17, p = 

3.97x10
-4

), and (b) former smokers (cor = -0.35, 95% CI: -0.42  – -0.28, p < 2x10
-16

), after 

adjusting for age, sex, race, and study site. 

 
Former smokers Current smokers 
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Supplemental Figure 2. Confirmation of smoking-associated methylation of AHRR in 

monocytes.  Plotted is the average CpG methylation measured for the differentially methylated 

region (DMR) in AHRR (chr5:373378-373556 hg19) containing 8 CpG sites (including 

cg05575921), that was identified using Reduced Representation Bisulfite Sequencing (RRBS, 

>20X coverage for DMR CpGs in all samples) in non-MESA monocyte samples.  Data shown 

are the mean values from two non-smokers and two smokers (p= 2.39 x 10
-5

).  
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Supplemental Figure 3. Up-regulation of AHRR expression in monocytes from smokers.  a) 

In MESA samples, AHRR expression measured using RNA-sequencing was up-regulated in 

monocytes from current smokers compared with never smokers (Ref.), but not in former smokers 

compared to never smokers. b)  In non-MESA samples, relative increases in AHRR expression 

between 2 and 26-fold (mean FC = 13.2; p=0.0025) were detected in monocytes from smokers 

(SM, n = 5) compared to non-smokers (NS, n = 5) using real-time polymerase chain reaction 

(RT-PCR). 
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