
The impact of nutrient depletion on T6S-mediated
population dynamics

Nutrient depletion model

Microbial communities deplete nutrients from their environment as they grow. To
explore the impact of nutrient depletion, we studied a simple resource-limited variant of
our competition model. The variant is identical to the original model except that we
now assume each lattice site starts with a finite nutrient supply, and thus a finite
“division capacity” K. Every time a cell divides at a particular location, the nutrient
supply k at that site is decreased by one unit: k → k − 1. Once the local nutrient
supply reaches zero, no further cell divisions can take place at that location (Fig. S6).
Thus every lattice site can support exactly K cell-division events.

Analysis of growth dynamics

To understand the effect of resource depletion on T6S-mediated competition, it is first
helpful to understand its effect on growth in the absence of killing. In this case, each
cell division leads to exactly one cell being placed in a previously unoccupied lattice site.
By assumption, this newly occupied lattice site has K cell divisions remaining. All
other previously occupied lattice sites remain occupied; individual cells may change
lattice sites, but overall there is the same number of sites with k cell divisions
remaining, except for the new site with K divisions remaining, and the site of the
cell-division event, for which k → k − 1.

We ignore the case of K = 1 (i.e., fixed active population), which implies linear
population growth. For all K > 1, we can classify all occupied lattice sites by the
number of cell divisions remaining. We can then stratify the cell population by the
remaining capacity of the site each cell occupies. Let pk represent the number of cells
that occupy lattice sites with k cell divisions remaining, and let us consider the average
behavior of pk.

Let α be the growth rate for cells, i.e. cells on sites with k > 0 divide at a rate α.
The population of cells on new, capacity K sites increases due to all cell divisions, but
decreases due to division of cells on capacity K sites. Hence, on average,

dpK

dt
= α

K−1∑
k=1

pk. (S9)

The populations of all other cell classes pk likewise decrease due to their own divisions
and increase due to divisions of the next higher class pk+1:

dpk
dt

= α (pk+1 − pk) , 0 < k < K. (S10)

Setting aside depleted sites (p0) for the moment, this relation can be expressed by the
matrix equation
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dp

dt
= Lp, (S11)

where p = (p1, p2, . . . , pK) and

L =


−α α . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −α α 0
α α . . . α α 0

 . (S12)

We observe numerically that the matrix L always has exactly one eigenvalue with
positive real part (Table S4). The growth of the population is therefore driven by this
dominant eigenvalue. To understand the dynamics of the system, therefore, we seek a
positive eigenvalue λ of L such that

dp

dt
= λp. (S13)

We further simplify the system by factoring out the growth rate α, defining L̂ = L/α
and µ = λ/α, such that

L̂p = µp. (S14)

We make the ansatz that at long times the population structure approaches a geometric
series

p =
(
1, β, . . . , βk−2, βk−1

)
. (S15)

Substituting this ansatz into Eq. S14, we obtain the relation


−1 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −1 1 0
1 1 . . . 1 1 0




1
β
...

βk−2

βk−1

 = µ


1
β
...

βk−2

βk−1

 . (S16)

For the last line (corresponding to pK), we have

1 +

K−2∑
k=1

βk = µβK−1, (S17)

and for all other lines we obtain

β = µ+ 1. (S18)

Substituting Eq. S18 into Eq. S17, we obtain the polynomial expression for the
eigenvalues of L̂
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1 +

K−2∑
k=1

(µ+ 1)
k
= µ (µ+ 1)

K−1
. (S19)

The largest root of Eq. S19 (by real value) is shown in Table S4. The table also shows
the dominant eigenvalues of the matrix L̂, demonstrating agreement between the two,
and confirming the ansatz (Eq. S15) for the asymptotic population structure.

We observe from Table S4 that µ approaches 1 with with increasing K. We therefore
write µ = 1− ε and expand Eq. S19 to obtain the estimate

µ(K) ≈ 1− 2−K . (S20)

Turning our attention to the inactive population p0, we note that p0 grows as a
result of cell division by subpopulation p1. Since p1 divides at a rate α, we have

dp0
dt

= αp1. (S21)

At long times, p1 grows at a rate set by the dominant eigenvalue. At long times,
therefore,

dp1
dt
−→ λp1. (S22)

By inspection of these two equations, we observe that for long times

dp0
dt
−→ α

λ

dp1
dt
, (S23)

which implies

p0 −→
α

λ
p1 =

1

µ
p1. (S24)

Substituting Eq. S20 and the ansatz from Eq. S15 into Eq. S24 and simplifying, we
obtain the estimate

p0 =
1

2K
. (S25)

Fig. S7a shows predicted and observed population growth over time, both without
and with nutrient depletion (K = 2). As predicted, nutrient-limited populations grow
exponentially, albeit at a slower rate than non-limited populations. The inactive
population fraction asymptotically approaches zero as K increases, as predicted by Eq.
S25 (Fig. S7b).

Effects of nutrient depletion on T6S competition dynamics

Fig. S8 presents the results of competition between T6S+ and sensitive individuals
during a range expansion. The initial conditions and parameters are identical to those
used for Figs. 4a-d. In the absence of nutrient limitation, the overall population grows
more quickly than when nutrients are limited (Fig. S8a). Nevertheless, even in a
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strongly nutrient-limited case (K = 2), the qualitative dynamics of the competition are
essentially identical whether nutrients are limited or not (Fig. S8b).

Since nutrients are depleted from the inside of a colony outward, might varying the
initial microcolony size reveal differences between nutrient-limited and non-limited
conditions? Fig. S9 explores competitive dynamics in range expansions for which the
cells are initially dispersed into clusters of a specific size. Larger clusters provide an
advantage to sensitive cells by giving them more time to form large domains before T6S
assault. However, no qualitative difference was observed between nutrient-limited and
non-limited conditions. Intuitively, because of exponential growth, only a small fraction
of the population is ever in the p0 state for which division is not possible, so the effects
of nutrient depletion are small.
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