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S1 Text. Exploring alternative distance functions: average Hausdorff and discrete average Fréchet

This text briefly explores variations of the Hausdorff and discrete Fréchet metrics that
are based on averages rather than maxima. Straightforward definitions are provided
for these average-type path distance functions. We walk through an example where
they violate the triangle inequality to show that they do not define proper metrics.
Both average-type path distance functions are applied in the context of the path-
sampling methods comparison (using Ward hierarchical clustering) and their behavior
is discussed. Future studies may serve to explore other possible definitions and the
extents of their application.

Definitions and implementation

The Hausdorff and discrete Fréchet metrics are both sensitive to path outliers—even when the
majority of points in two paths are spatially proximate, a single point that deviates substantially
can generate large path distance measurements. Indeed, Hausdorff and discrete Fréchet may not be
suitable for calculating an “overall” similarity along the entire lengths of two paths. There exist
many possible definitions for path distance functions based on measures of central tendency, such as
variations based on average or median distances; we consider two variations of the Hausdorff and
discrete Fréchet distance functions based on averages rather than maxima.

We recall that a metric must satisfy the following properties:

δ(A,B) ≥ 0 (1a)

δ(A,B) = 0 ⇐⇒ A = B (1b)

δ(A,B) = δ(B,A) (1c)

δ(A,C) ≤ δ(A,B) + δ(B,C). (1d)

A distance function may be said to satisfy the first three properties, whereas the triangle inequality
(Eq. 1d) may be violated. Below, we provide explicit definitions for average-type Hausdorff and
discrete Fréchet distance functions and show that they are not metrics using an example where the
triangle inequality is not satisfied.

Average Hausdorff distance

We define the average Hausdorff distance between two paths to be the sum of the nearest neighbor
distances for all points (on both paths) divided by the total number of points. We define the
one-sided summed Hausdorff distance from path P to path Q as

δ sum
h (P | Q) =

∑
p∈P

min
q∈Q

d(p, q), (2)
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so that the (symmetric) average Hausdorff distance is the total sum normalized by the total number
of points:

δ avg
H (P,Q) =

1

|P |+ |Q|
[δh(P | Q) + δh(Q | P )] , (3)

where |P | and |Q| are the cardinalities of (the number of points comprising) P and Q, respectively.
A similar definition was examined by Eiter and Mannila [1], the only difference being that they
normalized by the number of paths (1

2) rather than the total number of points in the paths ( 1
|P |+|Q|).

A sensible alternative is a weighted average Hausdorff distance,

δwavg
H (P,Q) =

1

2

[
1

|P |
δh(P | Q) +

1

|Q|
δh(Q | P )

]
, (4)

which normalizes the contribution of each one-sided sum so that each path contributes equally
irrespective of the number of constituent points. This prevents paths with relatively many points
from “diluting” the overall average when compared to those with fewer points. Weighted average
Hausdorff should thus minimize sensitivity to the number of points used to parametrize a path,
whereas the average Hausdorff distance will tend to discount distance contributions from paths with
relatively few points.

In Eq. 3, the average is over |P |+ |Q| total points, while in Eq. 4, separate averages over |P | and
|Q| points are averaged together with equal weights. These definitions are consistent with the usage
of “average” and “weighted average” for hierarchical clustering linkages (see S2 Text). For brevity,
we focus on the weighted average Hausdorff distance (Eq. 4) in this text.

Discrete average Fréchet distance

As with average-type Hausdorff distances, several definitions for a discrete average Fréchet distance
function are possible. We use a definition identical to that employed by Dickson et al. [2] where the
coupling distance is defined as the average link length (in the coupling), which is defined in the
subsequent discussion.

Following the description of the conventional discrete Fréchet distance in the main paper, we
consider two polygonal curves P and Q, each with n and m ordered points (respectively), in a
metric space (V, d) for some metric d. The sequence of line segments of P and Q are respectively
defined as σ(P ) = (p1, . . . , pn) and σ(Q) = (q1, . . . , qm). The coupling (in the product space
σ(Q,P ) ≡ σ(P )× σ(Q)) between P and Q is

C(P,Q) ≡ (pa1 , qb1), (pa2 , qb2), . . . , (paL , qbL), (5)

of L unique pairs of points (i.e., number of links) and satisfies the following conditions: (1) The
first/last pairs correspond to the first/last points of the respective paths (a1 = b1 = 1, aL = n and
bL = m); (2) at least one point on either of the paths must be advanced to its successive point, i.e.,
(ai+1 = ai and bi+1 = bi + 1) or (ai+1 = ai + 1 and bi+1 = bi) or (ai+1 = ai + 1 and bi+1 = bi + 1)
for all i = 1, . . . , L.

The definitions up to this point are identical to conventional Fréchet; however, the coupling
distance, C, is now defined as an average distance over all pairs of points in a coupling:

‖C‖ ≡ 1

L

L∑
i=1

d(pai , qbi). (6)

We now consider, as usual, the set of all possible couplings between P and Q, ΓP,Q, and take the
discrete average Fréchet distance between P and Q to be the minimum coupling distance:

δ avg
dF (P,Q) = min

C∈ΓP,Q

‖C‖. (7)
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Since the average is taken over the number of links in the coupling, the normalization factor for
two paths depends not only on the numbers of points in the paths, but the optimal coupling between
them. We can generate a coupling between P and Q with the possible fewest links by jumping
simultaneously along both paths (ai+1 = ai + 1 and bi+1 = bi + 1) until an end point on one path is
reached, then stepping along the rest of the points on the other path. Quantitatively, we have

Lmin = min {|P |, |Q|}+ |(|P | − |Q|)| = max {|P |, |Q|} . (8)

On the other hand, the maximum number of links is generated when a step is taken on only one
path at a time, i.e., no simultaneous jumps occur (ai+1 = ai, bi+1 = bi + 1 or ai+1 = ai + 1 and
bi+1 = bi):

Lmax = |P |+ |Q| − 1. (9)

In general, the normalization factor for discrete average Fréchet will be smaller than that for average
Hausdorff, and greater than or equal to the number of points in the larger of two paths:

max {|P |, |Q|} ≤ L ≤ |P |+ |Q| − 1. (10)

Are these distance functions also metrics?

Motivated by Buchin’s examination of summed and average Fréchet distances [3], we construct three
polygonal paths whose mutual average Hausdorff and discrete average Fréchet distances violate the
triangle inequality. We consider three paths P , Q, and R whose direction of traversal along each
path is from left to right

Average Hausdorff violates the triangle inequality

In Fig. 1, we consider the nearest neighbor distances for each pair of paths among P , Q, and R. As
with the usual Hausdorff distance, the average Hausdorff distance, δwavg

H , will be invariant to the
ordering of points. Following the illustration in Fig. 1A, the distance between P and Q, δwavg

H (P,Q),
is computed by considering the nearest neighbors in Q for all points in P and those in P for all
points in Q.

Procedure:

1. For each point in P , locate its nearest neighbor (the nearest point) in Q and record the
distance.

2. Compute the average nearest neighbor distance over all points in P , normalizing by the
number of points in P (five).

3. Repeat the process for Q (same as in previous step by symmetry).

4. Average the two average nearest neighbor distances for P and Q to compute the (weighted)
average Hausdorff distance.

Summing the distances explicitly, we have

δwavg
H (P,Q) =

1

2

[
1

5
(2l + l + 2l + l + 0) +

1

5
(2l + l + 2l + l + 0)

]
=

6

5
l. (11)

The distance between P and R is calculated analogously from Fig. 1B:

δwavg
H (P,R) =

1

2

[
1

5
(l + 0 + l + 0 + 0) +

1

6
(0 + 0 +

l

2
+
l

2
+ 0 + l)

]
=

11

30
l. (12)
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By symmetry, we also have δwavg
H (P,R) = δwavg

H (Q,R), so we have the relationship

11

30
l +

11

30
l <

6

5
l (13)

δwavg
H (P,R) + δwavg

H (Q,R) < δwavg
H (P,Q), (14)

which does not satisfy the triangle inequality. It can be easily shown that the (unweighted) average
Hausdorff distance (Eq. 3) also violates the triangle inequality for the paths in Fig. 1.
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Figure 1: Computing the average Hausdorff distance between three discretized paths P , Q, and R. The vertical
direction is expanded for the purpose of illustration and does not represent actual separation; each
curve is imagined to lie on the same horizontal axis. Numbered points have a corresponding dashed line
representing their nearest neighbor (on the other path). The average Hausdorff distance is computed
by averaging the horizontal lengths of dashed lines of a given color and then averaging the two averages
for a given pair of paths. (A) Nearest neighbors depicted for P (green) and Q (cyan). (B) Nearest
neighbors depicted for P and R (gray).

Discrete average Fréchet violates the triangle inequality

The schematic in Fig. 2 explicitly shows the links comprising the optimal couplings between path
pairs among P , Q, and R. As with the usual Fréchet distance, the discrete average Fréchet
distance, δ avg

F , is sensitive to the ordering of points; arrows on the paths indicate directionality. The
illustration in Fig. 2A depicts the sequence of links (i.e., coupling) with the minimal average link
length; the distance between P and Q, δ avg

F (P,Q), is computed from the depicted coupling.
Procedure:

1. Begin at the starting (leftmost) points in P and Q connected by the first link.

2. Step along P only (staying at the initial point on Q) until the fifth link (shown in magenta,
which has zero length) is reached.

3. Movement along P is completed; step along Q to its last point.

4. Compute the average link length—sum the lengths of all links (in the coupling) and divide by
the total number of links—to compute the discrete average Fréchet distance.

Averaging the link lengths explicitly, we have

δ avg
F (P,Q) =

1

9
(2l + l + 2l + l + 0 + l + 2l + l + 2l) =

12

9
l. (15)
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The distance between P and R is calculated from the coupling shown in Fig. 2B; we remark that
the second, fourth, fifth, and eighth (vertical) links each have zero length since P , Q, and R all lie
on the same horizontal line:

δ avg
F (P,R) =

1

9

(
l + 0 + l + 0 + 0 +

l

2
+
l

2
+ 0 + l

)
=

4

9
l. (16)

Again by symmetry, δ avg
F (P,R) = δ avg

F (Q,R), so we have the relationship

4

9
l +

4

9
l <

12

9
l (17)

δ avg
F (P,R) + δ avg

F (Q,R) < δ avg
F (P,Q), (18)

which violates the triangle inequality.
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Figure 2: Computing the discrete average Fréchet distance between three discretized paths P , Q, and R. The
vertical direction is expanded for the purpose of illustration and does not represent actual separation;
each curve is imagined to lie on the same horizontal axis. The (optimal) couplings producing the
minimal average link length (i.e., the discrete average Fréchet distance) are shown for P and Q (A),
and P and R (B). Links are represented by dashed lines, colored according to the path along which a
step is taken, and numbered sequentially for the given coupling; at step 5 in panel (A) and (B), the
link length is zero, progress along P is completed, and the remaining movement is solely along the
other path.

Summary and additional considerations

Our analyses demonstrate that the average-type Hausdorff distance functions (Eq. 3 and Eq. 4),
and the discrete average Fréchet distance (Eqs. 5–7), do not generally satisfy the triangle inequality
and are therefore not proper path metrics. We note that there may be some problems where the
relaxed triangle inequality,

δ(A,C) ≤ κ [δ(A,B) + δ(B,C)] , (19)

which scales the upper bound on δ(A,C), normally set by the full triangle inequality, by a finite
constant κ, may be sufficient [3]. However, by modifying the paths in Figs. 1 and 2 (by continually
increasing the number of “zig-zags” in P , Q, and R), it can be shown that κ becomes arbitrarily large
(see Ch. 6 in [3])—the relaxed triangle inequality is also violated by the path distance functions.

While neither PSA nor hierarchical clustering require the use of true metrics, the triangle inequality
is a useful property in that it is an intuitive extension of the transitive property. That is, when two
objects, A and B, in some metric space are close to a third object, C, in the same space, then A can
be considered close to B in the sense that their maximal separation is bounded from above by the
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triangle inequality: d(A,B) ≤ d(A,C) + d(B,C). In order to preserve commonsense intuition about
the pairwise relationships between paths, the main text discusses PSA exclusively in the context of
metrics.

Methods comparison using average-type distance functions

Although it was shown above that average Hausdorff and discrete average Fréchet are not metrics,
they may still prove to be useful distance functions. We generated heat map dendrograms for the
path-sampling methods comparison (using the definitions in Eq. 4 and Eq. 7) to get a feel for their
behavior under familiar circumstances.

Weighted average Hausdorff

Average Hausdorff distances substantially smaller than conventional Hausdorff (Fig. 3A), with the
largest average Hausdorff distance (2.84 Å) being about 1.5 Å smaller than the largest Hausdorff
distance (4.67 Å). In terms of clustering, the primary differences were that both GOdMD and
ANMP clustered with the rest of the dynamical methods. The MENM methods formed their own
cluster, which was in turn grouped with iENM. DIMS, rTMD-S, MDdMD, and FRODA clustered
very similarly to Hausdorff; this was also the case with the rTMD-F, Morph, MAP and LinInt
cluster, although Morph groups with MAP instead of rTMD-F in the average Hausdorff heat map.
In Fig. 3B, points fall noticeably below the diagonal (of unity slope), indicating that the magnitudes
of average Hausdorff distances are both bounded from above by the conventional Hausdorff distance.
The Pearson correlation was also weaker (0.868 versus 0.977) and the average Hausdorff distance
distribution, though qualitatively similar to that of conventional Hausdorff, is skewed toward smaller
values.
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Figure 3: (A) Path-sampling methods comparison for AdK closed → open transition of (weighted) average
Hausdorff distances using Ward linkage. (B) Correlation and joint distributions between Hausdorff and
(weighted) average Hausdorff distances (in Å rmsd) for the AdK closed → open methods comparison.
Reasonably strong linear correlation indicated by the scatter plot, with a Pearson correlation coefficient
close to unity.
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Discrete average Fréchet

On the other hand, discrete average Fréchet generates a different clustering (Fig. 4A) than the
other distance functions and, on the whole, exhibits much smaller distances. GOdMD clustered
with the rest of the dynamical methods (with the exception of TMD-F), while all of the elastic
network models were grouped along with the cluster of TMD-F, Morph, and LinInt; this is the
reverse of what was produced by both Hausdorff distance functions and conventional Fréchet, where
GOdMD ended up with the ENMs and the TMD-F, Morph, and LinInt cluster was grouped with
the dynamical methods. The majority of points in Fig. 4B fall substantially below the diagonal and
are more scattered compared with Fig. 3B; the marginal distribution of discrete average Fréchet
closely resembles the distribution produced by average Hausdorff, though the Pearson correlation
was slightly stronger (0.892 versus 0.868).
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Figure 4: (A) Path-sampling methods comparison for AdK closed → open transition of discrete average Fréchet
distances using Ward linkage. (B) Correlation and joint distributions between Fréchet and (weighted)
average Fréchet distances (in Å rmsd) for the AdK closed → open methods comparison. Noticeably
weaker linear correlation is indicated by the Pearson correlation and the scatter points show that
discrete average Fréchet produces distances substantially smaller than conventional discrete Fréchet.

Discussion

From a qualitative standpoint, Figs. 3A and 4A are satisfactory in distinguishing between the
most obvious patterns among the path-sampling methods. In particular, both clusterings generate
one group containing DIMS, FRODA, MDdMD, and TMD-S, another group with MENM-SD/SP,
iENM, and ANMP, and a third group with MAP, Morph, TMD-F, and LinInt. The clustering
within each of these groups are also quite similar, with the second and third MENM and iENM
paths being closer than the first paths. Interestingly, ANMP clusters with the methods based
on dynamical algorithms when using average Hausdorff, whereas average Fréchet places it with
the other ENM-based approaches. Meanwhile, the average Hausdorff and discrete average Fréchet
distances from the GOdMD paths and MAP(3), to paths from other methods, are substantially
smaller than those generated by conventional Hausdorff and Fréchet; the average Hausdorff distances
of MAP(3) also correspond to a relatively light band, although it is less pronounced than in the
average Fréchet heat map.

In conclusion, the path distance functions based on simple averages (rather than maxima)
considered in this supplement are not true metrics as they violate the triangle inequality. We
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acknowledge that there may be other path metrics based on measures of central tendency, or at
least more robust against outlier points, that would be worth exploring in the future. Furthermore,
we did not examine whether the triangle inequality was (or would likely to be) satisfied for a
typical path comparison where one may be dealing with a restricted class of curves. Situations
may arise where average-type path distance functions behave as metrics for a specific problem.
PSA is also not limited to the use of proper path (and point) metrics and it was seen in Figs. 3A
and 4A that our average-type Hausdorff and Fréchet distance functions both generated qualitatively
acceptable distance measurements. In light of these results, our main study focuses exclusively on
the conventional Hausdorff and (discrete) Fréchet metrics because they are satisfactory measures of
path similarity that also respect common intuitions about notions of closeness or dissimilarity.
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