
Supporting Information

S5 Text. Expanded overview of the transition path generating algorithms used in this study.

Here we provide a short review—for reader convenience—of the transition path gen-
erating algorithms used in the comparison of sampling methods. We summarize the
key aspects of each of the physical models and path generating algorithms to help lay
the groundwork for connecting algorithmic/model differences to differences between
the respective transition paths that were produced.

Overview

The sampling methods used to generate paths were selected primarily among those available on
publicly accessible servers. DIMS-MD [1,2] and FRODA [3] trajectories were generated in-house to
produce large AdK and DT path ensembles, which was not feasible for the other methods through
their web server interfaces. Table 1 summarizes the primary references and web server locations
for each method. We urge the reader interested in greater detail to refer to the original articles
published on each method for complete descriptions and explanations.

DIMS, MDdMD, and GOdMD are all non-deterministic dynamical algorithms that implement
importance sampling in the form of a soft-ratcheting Metropolis condition, although MDdMD
and GOdMD are hybrid methods that also incorporate additional biasing based on normal mode
information derived from coarse-grained potentials. The FRODA algorithm is dynamical and
deterministic, but can be made stochastic by turning on a random motion setting that performs
a random displacement/rotation of each rigid subunit prior to each step. The five ENM-based
methods (counting MENM-SD and MENM-SP separately) are all based on double-well anisotropic
network models, but use different approaches to generating a single (mixed) potential, and how
they generate a minimum energy path. MAP is unique in that it solves for the path that minimizes
the Onsager-Machlup action subject to Brownian dynamics boundary conditions, whereas the other
ENMs find steepest descent or saddle point paths.

Transition path methods details

DIMS MD [1,2] employs an informational criterion to bias a transition toward a target structure.
Here we use DIMS MD with the soft ratcheting algorithm together with Langevin dynamics and the
Analytical Continuum Electrostatics (ACE) model to generate stochastic MD steps in an implicit
solvent bath, as described previously [12]. A 1 fs time step was used with a collision frequency
(damping coefficient) of 25 p−1s. Steps toward the target (measured using heavy-atom rmsd-to-target
as the progress variable) are always accepted, while steps increasingly farther away from the target
are accepted with decreasing probability according to a Boltzmann distribution of the square of
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Table 1. Primary references and public web servers (if available) for path the path generation methods
that were employed in the study.

Name Reference Web server* Adjusted parameter†

DIMS Perilla et al. [2] – re-run

FRODA Farrell et al. [3] pathways.asu.edu re-run

MDdMD Sfriso et al. [4] mmb.irbbarcelona.org/MDdMD/ re-run

GOdMD Sfriso et al. [5] mmb.irbbarcelona.org/GOdMD/ relax: 20,50,80 ps

rTMD Ferrara et al. [6] – k, pull speed, re-run

ANMP Das et al. [7] anmpathway.lcrc.anl.gov/anmpathway.cgi/ cutoff: 12,15,18 Å

MAP Franklin et al. [8] lorentz.dynstr.pasteur.fr/joel/traj_newpath_submission.php cutoff: 7,10,13 Å

MENM Zheng et al. [9] enm.lobos.nih.gov/start_path.html cutoff: 8,10,12 Å

iENM Tekpinar and Zheng [10] enm.lobos.nih.gov/start_ienm.html cutoff: 8,10,12 Å

Morph Krebs and Gerstein [11] molmovdb.org/cgi-bin/submit.cgi fit/min, fit, none

LinInt – – –

The methods used to generate transition paths are given with their primary references and corresponding URL for
submitting jobs. Three different transitions were generated per method (except LinInt) by adjusting a single parameter to
three different values; Morph transitions were produced by varying input structure superimposition and energy minimzation
settings.
*Web server: URL of job submission page
†Adjusted parameter: re-run, initial conditions automatically randomized; relaxation, relaxation window in picoseconds; k,
spring constant; pull speed, speed of equilibrium position of moving restraint; cutoff, spring cutoff distance in Ångström; fit,
superimposition of input structures; min, energy minimization (adiabatic mapping).

the order parameter. Soft ratcheting has emerged as a robust approach to ensure overall progress
toward the target structure while retaining the capability to back out of energetic dead ends [2, 12].

FRODA [3] advances proteins toward a target structure by incrementally reducing the rmsd
while enforcing steric constraints. Random paths are produced by introducing random perturbations
to the orientation of one side chain per simulation step. Contact constraints shared by the initial
and final conformations were preserved throughout the simulations, while non-common contacts
were allowed to be broken and/or formed. Contacts were defined as atom pairs falling within an
8 Å cutoff radius.

Both MDdMD [4] and GOdMD [5] employ deterministic discrete MD to quickly sample large
regions of configuration space; for each simulation a sub-sequence of configurations is dynamically
constructed by selecting conformer snapshots on the fly according to a Metropolis-like Monte Carlo
(MC) procedure combined with informational criteria. The sub-sequences represent physically
plausible transition paths. In both approaches, progress is driven toward a final state using an soft
ratcheting-like algorithm. MDdMD further selects pre-accepted snapshots based on the degree of
eigenvector overlap with the essential transition vector. The essential transition vector is computed
(via NMA of a Gō-like potential) using primarily the initial state. GOdMD differs in that it employs
an ENM-metadynamics method to bias proteins away from the initial energetic well.

The MDdMD method employs simplified or multi-step square potentials for bonded interactions
at the atomic level. Solvent, van der Waals, and electrostatic forces are modeled using two-step
square wells for attractive interactions and soft barriers for repulsion. GOdMD is based on a Cα

representation. Square wells define the physical chemistry while a multi-well Gō-like potential
describes non-bonded interactions. For both methods the initial velocities are randomized so that
separate runs generate distinct trajectories. The three GOdMD trajectories were produced, however,
by varying the relaxation window: 20 ps, 50 ps and 100 ps.

The rTMD [6] (restrained TMD) method resembles the original TMD algorithm which was
based on a time-dependent holonomic constraint that moves linearly toward a target structure;
in the rTMD variation, a moving harmonic restraint is used instead. As with DIMS, the rTMD
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method requires a progress variable in the form of an atom selection for biasing. rTMD simulations
were set up to mimic DIMS simulations as closely as possible: the heavy-atom rmsd-to-target
progress variable was used for biasing and rmsd fitting; we used Langevin dynamics with an identical
time step and collision frequency, and the Generalized Born implicit solvent as implemented in
the NAMD simulation code [13] with a matching time step, collision frequency. During each time
step, the equilibrium position of the harmonic restraint is moved a fixed amount by decreasing
the rmsd to the target conformation. We generated six transitions in total, three for each of the
following settings (using velocities randomly sampled from the Maxwell-Boltzmann distribution):
three fast-pulling simulations with k = 4.184× 105 kJ/mol/Å and ∼ 1 Å/ps pulling speed; three
slow -pulling simulations with k = 4.184× 103 kJ/mol/Å and ∼ 0.01 Å/ps pulling speed.

Using the Cα positions of an initial and final structure, the CG-EN models examined here
construct two energetic potentials around the respective states. The separate potentials are then
combined (e.g. through a heuristic mixing rule) to form a double-well potential that models the
energy landscape of the configuration space spanning the two states. A path is generated from
the double well potential using, for instance, a minimum energy path (MEP) approach. The
ANMP [7] algorithm constructs two anisotropic network models (ANM) about their respective
end states, iteratively searches for transition state defined as the minimum energy structure lying
on the cusp hypersurface of a combined two-state potential, and performs two steepest descent
(SD) minimizations from the transition state to generate a sequence of conformers that represent a
conformational path. Three transitions were generated using the following spring cutoff distances:
12 Å, 15 Å and 18 Å. Similarly, MAP [8] generates a separate ANM potential around each end
state. The MAP transition is generated by first minimizing the Onsager-Machlup action assuming
overdamped Langevin dynamics, then the resulting deterministic equations are solved analytically
for positions and velocities using appropriate boundary conditions. Spring cutoff distances were set
to 7 Å, 10 Å and 13 Å.

The AD-ENM Web Server [9, 10] offers two approaches to generating ENM transitions. Like the
ANMP and MAP models, both approaches are based on ANM representations of the initial and final
protein configurations. The MENM of the PATH-ENM server generates a double-well potential
from a predefined mixing function. The energetic minima and saddle points (SPs) are computed
and transitions are generated in one of two ways: (1) The steepest descent (SD) paths about each
SP; (2) The path tracing the minima and SPs. The iENM server exploits the independence of
the equation for the minima and SPs on the detailed form of the mixing function. An iterative
procedure is used to solve for the universal minimum-energy path (MEP) through the SPs of an
arbitrary double-well potential that includes a predefined steric collision energy. Three distinct
transitions for each method were produced using an 8 Å, 10 Å and 12 Å spring cutoff distance.

The Morph [11] servers generate transitions using adiabatic mapping, which combines simple
linear interpolation (between two structures) and CHARMM-based energy minimization to reduce
severe steric clashing. Two transitions were generated using stepwise energy minimization: one
transition used the ‘superimpose before morphing’ option, while the other relied on our CORE
alignment procedure (described in S4 Text), allowing us to compare possible path differences
arising from structural pre-alignment. A third transition without both energy minimization and
superimposition was also performed.

We also generated a zeroth-order transition path using naive linear interpolation (LinInt). The
path is defined by a sequence of evenly spaced conformers lying along the line formed by the
separation vector between the Cα representations of the initial and final states. We used LinInt as a
convenient reference path for the comparison of the higher-order methods.
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