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General characteristics of design patterns

A design pattern is defined by six attributes: name, problem, context, design rationale,
solution, and case-studies [1]. The name identifies the design pattern, and should be
informative enough to summarise its objective. The problem formally describes the
purpose of the design pattern, and possibly gives constraints to be satisfied. The context
determines the domain of applicability of the design pattern, and provides a set of
preconditions that must be fulfilled for its usage. The design rationale explains the
what and the how of the design pattern, that is, its origin and working principles.
Typically, the design rationale contains a description of the basic principles underlying
the proposed solution, together with some insight about why it efficiently functions.
The solution provides tools and guidelines for the implementation of the distributed
system. The core of the solution is represented by the formal description of the
distributed process at different abstraction levels—from macroscopic to
microscopic—together with the relationship between them. Additionally, a set of
recommended implementation strategies describe how to deal with problems recurring
in practical application scenarios, which may have a bearing on the relationship between
microscopic and macroscopic description levels (i.e., the micro-macro link). Finally, a
design pattern includes a set of case studies along with a thorough evaluation to
showcase the functioning of the design pattern.

Detailed description of the proposed design pattern

Following the above definition, we provide here a detailed description of the design
pattern for decentralised decision making. The case studies are described in the main
text. In some cases, the information provided in the main text has been repeated for
the sake of completeness.

Name

Collective decisions through cross-inhibition (CDCI)
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Problem

The recurring problem tackled by this design pattern is the best-of-n decision problem,
that is, the choice of the best option, or any of the equal-best options, among a finite,
possibly unknown number n of different alternatives. Each option i ∈ {1, . . . , n} is
characterised by the quality vi ∈ [vm, vM ]. The decision-making process therefore
requires:

• the identification of (possibly all) the available options;

• the estimation of the quality vi of each identified option i;

• the selection of the best one, or of any of the equal-best options
i? ∈ arg maxi∈{1,...,n} vi.

We study decision making for a distributed system composed of N autonomous agents
ag, g ∈ {1, . . . , N}. Each agent is either committed to one of the available options
(C(ag) = Ci, i ∈ {1, · · · , n}), or uncommitted (C(ag) = CU ). At the macroscopic level,
a decision is taken as soon as the entire population (or a large fraction Ψq) gets
committed to one of the options.

The best-of-n decision problem is a challenging problem especially when the number
and quality of the available alternatives is not known apriori. Additional complexity
might result from uncertain environmental conditions that determine a noisy estimation
of the option quality. In other words, the inaccurate quality estimation requires
repeated evaluations to increase the decision accuracy. This is a time-consuming process
that naturally leads to a speed-accuracy tradeoff [2].

In a distributed system, each agent may discover and evaluate only a small subset of
the available options. However, the system as a whole has to converge on the best
option (or any of the equal-best options).

Context

The CDCI supports the implementation of decentralised decision-making for a
multiagent system in which each agent is autonomous and features the following
minimal set of abilities:

• it can individually recognise available options;

• it can individually estimate the options quality;

• it can communicate with peers using small amounts of information;

• it can recognise peers committed to a different option.

Agents neither need to be able to memorise more than one option at a time, nor to
explicitly compare different options. The estimated quality v̂i of a selected option is
used only to modulate the individual behaviour (e.g., by altering the probability of
performing a certain action). Agents are assumed not to have global knowledge of the
system state (e.g., population size, distribution of agents across populations, number of
available options). Given these constraints and preconditions, a viable solution to
achieve a collective decision is the implementation of a truly decentralised algorithm.

Design rationale

Models of collective decision making have been studied in different domains, from
ethology to social dynamics. In this work, we propose a methodology starting from a
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model of nest site selection in honeybee swarms [3]. In honeybee swarms, after spring
reproduction, several thousands bees leave their hive and create a cluster in the
neighbourhood lasting a few days. During this time, the oldest bees in the swarm search
for new nest sites and, once they discover one, they commit to it. On the one hand,
committed bees have a tendency to spontaneously abandon their commitment. On the
other hand, by interacting with other bees through the waggle-dance, committed bees
recruit uncommitted nest-mates to the site they have discovered. The waggle-dance
duration is proportional to the quality of the advertised nest, and this induces a positive
feedback that increases the number of bees committed to the best quality nests.
Eventually, a quorum is reached for a single site, which is chosen as the new nest site.
Recently, it has been discovered that bees committed to different options cross-inhibit
each other through stop signals [3]. A bee committed to a site that receives several stop
signals abandons its commitment and becomes uncommitted. This mechanism allows
the swarm to break decision deadlocks in case of equal-best options. In this way, the
swarm reduces the decision time, thus exposure to dangers such as predation or adverse
weather conditions.

The decision-making process is based on individual actions and peer-to-peer
interactions (i.e., discovery, abandonment, recruitment and cross-inhibition), and lets
the swarm quickly converge towards the highest quality option without the need of
quality comparisons. It also allows to break deadlocks between same quality options, as
well as to modulate the decision dynamics on the basis of the quality of the discovered
options [4]. These advantageous characteristics and low requirements in terms of agent
capabilities allow designers to apply the design pattern in a large number of different
application contexts.

Solution

The collective decision making process of honeybees is modelled as a continuous-time
Markov process [3]. Starting from this model, through a mean-field approximation, a
deterministic macroscopic model is derived as a system of two coupled ODEs for a
binary decision problem. Here, we extend the models for a best-of-n problem and
complement the multi-level description by introducing the Master equation, and the
Probabilistic Finite State Machine (PFSM) that describes the individual agent
behaviour.

Macroscopic description: infinite-size, deterministic, time/state-space
continuous Let us consider a population of N agents (with N →∞). At the
macroscopic level, we model the population fractions of committed agents Ψi = Ni/N
(with Ni the number of agents committed to option i) and the fraction of uncommitted
agents ΨU = NU/N (with NU the number of uncommitted agents). Agents change their
commitment state through four different processes: discovery (γ), abandonment (α),
recruitment (ρ) and cross-inhibition (σ).

We extend the model for binary decisions proposed in [3] to the best-of-n decision
problem. The model describes the mean system behaviour as a system of n coupled
ODEs and an algebraic equation for mass conservation:{

Ψ̇i = γiΨU − αiΨi + ρiΨiΨU −
∑
j 6=i σjΨiΨj

ΨU = 1−
∑
i Ψi

, i ∈ {1, . . . , n} (1)

Each differential equation in (1) describes the variation of the fraction of agents in each
population. The fraction of agents committed to option i increases through discovery
(at a rate γi) and through recruitment proportional to the population committed to i
(at a rate ρiΨi). Conversely, the fraction decreases through abandonment (at a rate αi)
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or through cross-inhibition proportional to the contrasting populations (at a rate∑
j 6=i σjΨj ,). All model parameters represent the rate at which agents change their

commitment state. Therefore, we assume all model parameters to be non-negative:

αi, γi, ρi, σi ≥ 0 (2)

For a decision-making problem based on the quality of the available options, all model
parameters could be linked to the option quality vi:

αi = fα(vi), γi = fγ(vi), ρi = fρ(vi), σi = fσ(vi), (3)

where each function describes a specific relationship between transition rate and option
quality (see [4] for an example).

This model describes the average proportion of agents in each population for a
system with an infinite number of agents. It is deterministic and continuous in time and
in the state space. The model can be exploited to determine the macroscopic behaviour
corresponding to a given parameterisation, and to provide constraints to the possible
parameterisations in order to obtain a desired system behaviour. This ultimately
translates in constraints in the design of the relationship between option quality vi and
transition rates γi, αi, ρi, and σi.

Macroscopic description: finite-size, stochastic, time continuous,
state-space discrete The mean-field model can be derived from a Markov process
describing the dynamics of a population with finite size N [3]. We can represent the
generalised case for best-of-n decisions through chemical reactions representing agents
changing their commitment state, either spontaneously or by interacting with other
agents:

CU
Qγi−−→ Ci

Ci
Qαi−−−→ CU

CU + Ci
Qρi−−→ 2Ci

Ci + Cj
Qσj−−−→ CU + Cj , i 6= j,

(4)

where the Qλi , λ ∈ {α, γ, ρ, σ} represent reaction constants [5]. Starting from the above
description, it is possible to derive the master equation, which describes the time
evolution of the system as a stochastic, discrete-state process. More precisely, the
master equation describes the time evolution of the probability mass function related to
each possible state in which the system can be found:

δ

δt
P (N, t) =

4n∑
k=1

[βk − P (N, t)Qk], ∀N (5)

where N = 〈NU , N1, . . . , Nn〉 corresponds to the system state, k is an index for each of
the 4n possible transitions, and the term βk is the probability that the system is one
transition k “away” from state N at time t, and undergoes the transition k in (t, t+ δt).
The quantities Qk are defined as follows:

Q1 = NUQγ1 Q2 = N1Qα1

Q3 = NUN1Qρ1 Q4 =
∑
j 6=1N1NjQσj

. . .

. . .

. . .
Q4n−3 = NUQγn Q4n−2 = NnQαn
Q4n−1 = NUNnQρn Q4n =

∑
j 6=nNnNjQσn

(6)
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For instance, in the binary case with options A and B, the term NUNAQρAδt
represents the probability that a recruitment transition for option A occurs in the time
interval δt, changing the system state from 〈NU , NA, NB〉 to 〈NU − 1, NA + 1, NB〉.

The transition rates of the ODE model of equation (1) have direct correspondence
with the transition probabilities of the master equation (5). For the generic transition
rate λ, the conversion formula is:

Qλi = λiN
1−na ,

λ∈ {γ, α, ρ, σ}
i∈ {1, · · · , n} (7)

where na is the number of populations involved in the transition. The factor N1−na is
consequence of the fact that the transition rates are used in differential equations that
contain population fractions, while the transition probabilities are used in combination
with the total number of agents in the population. For transitions involving a single
population, i.e., discovery and abandonment, we have na = 1 and therefore we obtain a
direct correspondence between transition rates and probabilities per unit time:

Qγi = γi, Qαi = αi (8)

Conversely, for recruitment and cross-inhibition (i.e., transitions that correspond to
interactions between populations), na = 2 and therefore

Qρi = ρiN
−1, Qσi = σiN

−1 (9)

These relations provide a mean to link the two macroscopic descriptions of the process,
allowing to study the adherence of the finite-size system to the mean-field dynamics.

At this description level, the model accounts for the stochastic fluctuations of the
system due to finite-size effects (i.e., the influence of a finite system size N). Given the
complexity of analytically solving the master equation (5), we analyse it through
numerical simulation via the Gillespie algorithm [5]. As we show in the main text, the
numerical analysis reveals how the system behaviour departs from the predictions of the
mean-field approximation. This model allows us to study the effects of the relationship
between quality v and transition probabilities Qλ, and therefore to take decisions about
the desired macroscopic dynamics at design time.

Microscopic description: agent-based, stochastic, time/state-space discrete
The average agent behaviour is modelled as a probabilistic finite state machine (PFSM,
see panel A in S1 Fig.) with n+ 1 states {CU , C1, . . . , Cn} which represent the agent
commitment state, and by 4n transition probabilities (four transitions for each option i),
which determine the state change (either spontaneous or upon interaction with agents of
a different population). Differently from the previous models, here the system changes
state at discrete time steps of length τ . The 4n probabilities determine the individual
behaviour and may be modulated according to the option quality vi.

Upon discovery of option i, agents make a transition from state CU to state Ci with
probability Pγ(vi) (in average). Similarly, upon abandonment of option i, agents make
a transition from state Ci to state CU with probability Pα(vi). Discovery and
abandonment are spontaneous transitions, that is, the probability depends solely on the
option quality vi (as estimated by the agent itself). Conversely, the remaining
transitions depend also on the size of the different sub-populations, which can be
estimated upon interaction with other agents (see below). Recruitment to option i is
modelled by a transition from state CU to state Ci with probability PΨiPρ(vi), where
the first factor accounts for the probability of interacting with agents already committed
to option i given the current population size, and the second factor accounts for a
quality-dependent probability of triggering the state change. Similarly, cross-inhibition
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is modelled by a transition from state Ci to state CU with probability
∑
j 6=i PΨjPσ(vj).

Here, the overall transition probability aggregates the probability of interaction with
any agent committed to option j 6= i. Also in this case, the first factor accounts for the
population size and the second factor accounts for a quality-dependent transition
probability. The cross-inhibition of an agent committed to option i is influenced by the
population size and by the quality of the contrasting options.

As already mentioned, at this level we describe the agent behaviour in average,
which might not correspond to the actual implementation. In fact, the transition
probabilities between commitment states might be implemented differently for each
agent, as we will show in the following sections. The transition probabilities
Pλ(vi), λ ∈ {γ, α, ρ, σ} presented above correspond to the average case, and they can be
related to the probabilities per unit time of executing a transition at the macroscopic
level, so that the following relations hold:

Pγ(vi) = Qγiτ = γiτ
Pα(vi) = Qαiτ = αiτ
PΨiPρ(vi) = QρiNiτ = ρiτNiN

−1

PΨiPσ(vi) = QσiNiτ = σiτNiN
−1

(10)

where τ is the discrete time step of the PFSM. Under the assumption of a well-mixed
system, the probability of interaction with an agent committed to option i corresponds
to the fraction Ψi, that is:

PΨi =
Ni
N

(11)

Considering also Eq. (3), we can derive a general quality-dependent relationship for the
transition probability:

λi = fλ(vi) → Pλ(vi) = fλ(vi)τ,
λ∈ {γ, α, ρ, σ}
i∈ {1, . . . , n} (12)

To obtain a desired macroscopic behaviour, one can opportunely define the average
transition probabilities as a function of the quality vi. Conversely, given the relationship
between quality and individual probabilities, it is possible to easily derive the
macroscopic dynamics.

Implementation guidelines To proceed to the implementation of the agent
behaviour, several design choices are required to determine how agents change state
depending on either the population size or the option quality. The challenge is given by
the fact that agents do not have access to global information—e.g., population size,
number of available options—as described in the CDCI design pattern context. In such
conditions, it is necessary to make design choices about the strategy for executing the
state transitions of the PFSM to guarantee a one-to-one correspondence between the
microscopic and macroscopic description levels.

Population size dependent probabilities The computation of the probability
PΨi requires a decentralised estimation of the population size given that, in the
considered distributed system, neither Ni or N are available to the individual agent.
Each agent compensates this lack of knowledge by estimating a probability PΨi through
interactions with neighbours. A possible solution consists in letting each agent take a
sample of the total population. This means that before taking action, the agent has to
collect enough information about the size of the different populations by sampling the
state of neighbour agents:

PΨi =
|Ãi|
|Ã|

, (13)
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where Ã is the set of sampled agents, and Ãi ⊆ Ã is the set of agents in state Ci.
Depending on the pattern of interactions and on the sample size |Ã|, the quality of the
estimation largely varies. Therefore, it is necessary to carefully design the sampling size
in order to guarantee a certain level of accuracy.

Another possibility is to let each agent draw a random agent aĝ from its local
neighbourhood, check its commitment state and compute the probability PΨi as:

PΨi =

{
1 C(aĝ) ∈ Ci
0 C(aĝ) /∈ Ci

, i ∈ {1, · · · , n} (14)

Assuming a well-mixed system, the frequency of picking an agent committed to option i
is given exactly by Eq. (11), which corresponds to the desired behaviour in average.
This second strategy is more parsimonious, as it requires fewer agent-agent interactions
and no additional computations, and is therefore the choice that maximises speed.

Homogeneous versus heterogeneous implementation For what concerns the
other transition probabilities (Pγ , Pα, Pρ, Pσ), we propose two strategies based on
either homogeneous or heterogeneous system implementation. In the homogeneous case,
all agents share the same transition probability, leading to a direct correspondence
between the actual and the average agent behaviour:

Pλ,g(vi) = Pλ(vi),
g ∈ {1, . . . , N}
λ∈ {γ, α, ρ, σ}
i∈ {1, . . . , n}

(15)

From (12), we can derive a first constraint to respect for a correct system
implementation, following from the need that each probability must be less than 1:

Pλ,g(vi) ≤ 1 → fλ(vi) ≤
1

τ
(16)

In the heterogeneous case, each agent ag computes independently its own transition
probability Pλ,g(vi), and the system behaviour results from the aggregation of the
individual responses. At the macroscopic level, the transition probability per unit time
(or conversely the transition rate) depends on the probability that any agent in a given
population follows the corresponding transition. This depends on both the way in which
the individual agent follows a transition, and on the heterogeneity of the system. In
order to relate the macroscopic parameters to the individual probabilities and the
option quality vi, we propose to implement the transition probabilities with a simple
response threshold scheme. The agent ag follows a transition with a fixed probability if
the (estimated) option quality exceeds a given response threshold δg:

Pλ,g(vi) =

{
Pλ↑ vi > δg
Pλ↓ vi ≤ δg

, (17)

where Pλ↑ and Pλ↓ are tuneable parameters, and the value δg is drawn for each agent
ag from a probability distribution Dλ over the range [vm, vM ]. With this
implementation, it is possible to establish a relationship between microscopic and
macroscopic parameters through the cumulative distribution function of Dλ, FDλ :

FDλ =
Pλ − Pλ↓
Pλ↑ − Pλ↓

(18)

For FDλ to be a cumulative distribution function, it is required that the relationship
between quality and macroscopic transition rate expressed in Eq. (3) be monotonic in
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v—either increasing or decreasing. As a consequence, the step function (17) can be
determined by:

Pλ↑ = Pλ(vM ) = fλ(vM )τ
Pλ↓ = Pλ(vm) = fλ(vm)τ

, (19)

which together with Eq. (12) provides the micro-macro link for the heterogeneous case.
Such a micro-macro link holds when each agent ag re-samples the threshold δg from

Dλ at every decision step. From an implementation perspective, however, re-sampling is
not a parsimonious design choice, neither it is biologically plausible. Instead, fixed
thresholds would be a more suitable solution: they would simplify the design and are
also biologically relevant (e.g., response thresholds determined genetically or acquired
through learning [6]). However, fixed thresholds lead to a quasi-deterministic behaviour
of the agents in face of a given option quality, as they are unable to modulate their
behaviour according to the perceievd quality. The decision problem would therefore lead
to “frozen” sub-populations, and the microscopic dynamics would diverge from the
macroscopic predictions. By studying the behaviour of different parameterisation, we
recognised that an approximation with fixed thresholds is still valid for recruitment and
cross-inhibition, because re-sampling is ensured by changing partner in each different
interaction (as shown in case study I-A). Instead, the micro-macro link is hampered by
the usage of fixed thresholds for spontaneous transitions, unless the macroscopic
dynamics are dominated by recruitment and cross-inhibition (as shown in case study
1-B). Therefore, a principled choice about the usage of fixed thresholds can be made on
the basis of the desired macroscopic patarmeterisation. Should the system be governed
principally by spontaneous transitions, the fixed threshold scheme is not suitable.
Otherwise, it represents a viable solution, which is also biologically plausible [7]. Finally,
note that homogeneous and heterogeneous strategies can be mixed together, so that the
agent behaviour can be homogeneous with respect to some transition probabilities, and
heterogeneous with respect to others.

Latent and interactive agents As a further implementation guideline, we discuss
here the case in which agents cannot interact every τ seconds. This is a very common
condition in practical application scenarios, because of spatial/topological factors that
determine the interaction pattern, or because interactions are constrainted by
limitations of the computing power or by the communication channel. To model such
conditions, we introduce the possibility for agents to be either latent or interactive.
When an agent is latent, it cannot communicate or receive messages from neighbours,
but is still capable of changing its commitment state following spontaneous transitions.
In the interactive state, agents are capable of communicating with other agents, and
therefore can change commitment state accordingly. We refer to changes in the
latent/interactive state as activity dynamics, as opposed to the commitment dynamics
resulting into changes of the commitment state. We model the activity dynamics by
considering that an agent becomes latent with probability PL and returns interactive
with probability PI (see also the PFSM in Fig. 1B in the main text). Equivalently,
agents may remain in the interactive or latent state for exponentially distributed time
intervals, respectively with mean time τI = 1/PL and τL = 1/PI . Under these
conditions, the distribution of agents between interactive and latent states reaches
asymptotically the fractions ηI = PI/(PI + PL) and ηL = PL/(PI + PL).

By coupling together activity and commitment dynamics, we obtain a microscopic
description with 2(n+ 1) states. Here, agents can be uncommitted and latent (state
CLU ), uncommitted and interactive (state CIU ), committed to option i ∈ {1, . . . , n} and
latent (state CLi ), or committed to i and interactive (state CIi ). Transitions between
these states can be arranged in different ways, constrained by the need to correctly
represent both the commitment and the activity dynamics. Recruitment and
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cross-inhibition are available only when agents are interactive, and the final state can be
either interactive or latent, depending on the application. Conversely, discovery and
abandonment may be available in any state, and the actual choice depends on the
application needs. An example PFSM is provided in panel B of S1 Fig., and
corresponds to the microscopic description for the search and exploitation task described
in this paper. Here, the transition probabilities between different activity states must be
appropriately tuned to reduce to the overall activity dynamics described by the PFSM
of Fig. 1B in the main text. In the given example, the following relations hold:

PL,i = PL −
∑
j 6=i PΨjPσj

PL,U = PL −
∑
i PΨiPρi

, i ∈ {1, . . . , n}, (20)

which ensure that the overall transition probability from interactive to latent states
sums up to PL. Note that in the PFSM of S1 Fig. panel B, there is always just one
possible transition from a latent to an interactive state, with probability PI .

In order to maintain a micro-macro link despite the existence of latent agents, the
population of interactive agents must always be an unbiased sample of the entire
population. More precisely, given the fraction ΨI (ΨL) of agents in the interactive state
I (latent state L), we require that:

ΨI
i

ΨI
≈ ΨL

i

ΨL
≈ Ψi, (21)

where ΨI
i and ΨL

i represent the fractions of agents that are found in state CIi and CLi
within the entire population. In fact, if changes in the commitment state within the
interactive sub-population (fraction ΨI) are much faster than changes in the activity
state (i.e., agents switching between states I and L), the distribution of commitment
states among interactive agents would misrepresent the global population distribution,
and therefore the microscopic and macroscopic dynamics would diverge. As a
consequence, we require that the transitions in the activity state must be faster than
transitions in the commitment state, for instance by constraining the decision to change
commitment state to each transition from latent to interactive, as done in the search
and exploitation task presented in this paper.

The correspondence between microscopic and macroscopic parameters depends on
the way in which microscopic transitions are implemented. Because some transitions are
available only to interactive (latent) agents, the corresponding macroscopic rate must be
reduced by ηI (ηL), which represent the fraction of the population that can actually
change commitment state. Conversely, given a desired macroscopic transition rate, the
average probabilities per agent must be increased by 1/ηI (1/ηL). For the example of S1
Fig. panel B, recruitment and cross-inhibition transitions are available only when
agents are interactive, therefore Eq. (12) should be written as follows:

λi = fλ(vi) → Pλ(vi) =
fλ(vi)τ

ηI
,

λ∈ {ρ, σ}
i∈ {1, . . . , n} (22)

On the other hand, discovery and abandonment are only available to latent agents, and
therefore the average probability per agent must take into account the proportion of
agents in the latent state:

λi = fλ(vi) → Pλ(vi) =
fλ(vi)τ

ηL
,

λ∈ {γ, α}
i∈ {1, . . . , n} (23)

Minimum speed of the process The time step τ at which the agent updates its
commitment state determines the process speed. In order to obtain a precise
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correspondence between macroscopic transition rates and microscopic transition
probabilities, the value of τ must be conveniently sized. To calculate an upper bound
for τ , we consider the coexistence of transitions exiting from a same state of the PFSM,
and we require that the total probability of leaving the state be lower than one. For
instance, an agent that directly follows the behaviour described by the PFSM of S1 Fig.
panel A has n recruitment and n discovery transitions all exiting from state CU . This
means that the overall probability from all outgoing transitions must not exceed one:

n∑
i=1

Pγ(vi) + PΨiPρ(vi) ≤ 1 (24)

Similarly, a constraint is given by the overall outgoing probability from the commitment
state Ci:

Pα(vi) +

n∑
j 6=i

PΨjPσ(vj) ≤ 1 (25)

Recall however that the PFSM of S1 Fig. panel A is the representation of the average
agent, which differs from the actual implementation. The implementation guidelines
described above prescribe that at most one interactive transition is available at a time.
Additionally, we can assume that at most one spontaneous transition may become
available at a time, given that in most application scenarios the evaluation of available
alternatives is performed sequentially by individual agents. Overall, to compute the
upper bound, we consider only one interactive and one spontaneous transitions at a
time. A safe upper bound of τ is guaranteed by considering the extreme case in which
PΨi = 1 and vi maximizes Pλ(vi) (with λ ∈ {γ, α, ρ, σ}):{

maxvi Pρ(vi) + maxvi Pγ(vi) ≤ 1
maxvi Pα(vi) + maxvi Pσ(vi) ≤ 1

, (26)

which, together with (12), can be rewritten as follows:{
τ ≤ (maxvi fρ(vi) + maxvi fγ(vi))

−1

τ ≤ (maxvi fα(vi) + maxvi fσ(vi))
−1 (27)

The constraint for the upper limit of the agent’s time-step τ reduces to the minimum
value of Eq. (27). Note that in Eq. (27), we specify a constraint on the multi-agent
system speed as a function of only macroscopic transition rates independently of the
implementation strategy of the individual agent behaviour (whether homogenous,
heterogenous or mixed). This upper-bound can be further refined considering the actual
implementation, and the possible existence of latent and interactive states.

Dealing with episodic discovery Discovery is the process that allows to report the
existence of an option to the swarm. In many practical application scenarios, discovery
is an episodic event, that is, a given option is recognised by the agents only occasionally
due to the limited individual agent capabilities. This can be related either to temporal
or spatial constraints (e.g., discovery of options is correlated with the position in space
of the agent, see the search and exploitation task presented in the main text). When no
option is available, the agent cannot make a discovery transition. This has a bearing on
the macroscopic dynamics resulting from the agent behaviour, because the macroscopic
rate depends on the probability that an agent actually encounters the option i. If we
refer to this probability as Ei, then we can rewrite Eq. (12) as follows:

γi = fγ(vi) → Pγ(vi) =
fγ(vi)τ

Ei
(28)
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Knowing how agents discover potential options is necessary to correctly link the
microscopic and the macroscopic dynamics. In many practical scenarios, Ei can be
estimated a priori to support the choice of the microscopic parameterisation.
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