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1 Remarks on a theory of architectures for invariant recognition

Figure 1. It is hypothesized that properties of the ventral stream are determined by these three factors. We
are not the only ones to identify them in this way. For example, Simoncelli and Olshausen distinguished the
same three factors [1]. The crucial difference between their efficient coding hypothesis and our invariance
hypothesis is the particular computational task that we consider. In their case, the task is to provide an efficient
representation of the visual world. In our case, the task is to provide an invariant signature supporting object
recognition.

The new theory of architectures for object recognition [2]—applied here to the ventral stream—is quite
general. It encompasses many non-biological hierarchical networks in the computer vision literature in
addition to ventral stream models like HMAX. It also implies the existence of a wider class of hierarchical
recognition algorithms that has not yet been fully explored. The conjecture with which this paper is
concerned is that the algorithm implemented by the ventral stream’s feedforward processing is in this
class. The theory can be developed from four postulates: (1) Computing a representation that is unique to
each object and invariant to identity-preserving transformations is the main computational problem to be
solved by an object recognition system—i.e., by the ventral stream. (2) The ventral stream’s feedforward,
hierarchical operating mode is sufficient for recognition [3–5]. (3) Neurons can compute high-dimensional
dot products between their inputs and a stored vector of synaptic weights [6]. (4) Each layer of the
hierarchy implements the same basic “HW-”module, performing filtering and pooling operations via the
scheme proposed by Hubel and Wiesel for the wiring of V1 simple cells to complex cells [7].

We argue that as long as these postulates are approximately correct, then the algorithm implemented
by the (feedforward) ventral stream is in the class described by the theory, and this is sufficient to explain
its domain-specific organization.

1.1 The first regime: generic invariance

First, consider the (compact) group of 2D in-plane rotations G. With some abuse of notation, we use g
to indicate both an element of G and its unitary representation acting on images. The orbit of an image
I under the action of the group is OI = {gI | g ∈ G}. The orbit is invariant and unique to the object
depicted in I. That is, OI = OI′ if and only if I ′ = gI for some g ∈ G. For an example, let I be an image.
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Its orbit OI is the set of all images obtained by rotating I in plane. Now consider, g90◦I, its rotation by
90◦. The two orbits are clearly the same, i.e. OI = Og90◦I . The set of images obtained by rotating I is
the same as the set of images obtained by rotating g900I.

The fact that orbits are invariant and unique (for compact groups) suggests a recognition strategy.
Simply store the orbit for each familiar object. Then, for each new image, check what orbit it is in. Such
a strategy would yield invariant representations for familiar objects. However, it could only be used in
cases where we had already stored the entire orbit for all objects of interest. How could this approach
work in the more realistic setting where only one sample from the test object’s orbit is available?

The key property that enables this approach to object recognition is the following condition. For a
stored template t with unit norm

〈gI, t〉 = 〈I, g′t〉 ∃g′ ∈ G ∀g ∈ G. (1)

It is true whenever g is unitary since in that case g′ = g−1. It implies that it is not necessary to have
the orbit of I in advance. Instead, the orbit of t is sufficient. Eq. (1) enables the invariance learned from
observing a set of templates to transfer to new images. Consider the case where the full orbits of several
templates t1, . . . , tK were stored. Let I be a completely novel image. Let P be a function mapping sets of
real numbers to R. For example, we can choose P = max(·). An invariant signature µ(·) can be defined
as

µ(I) =

P ({〈I, gt1〉 | g ∈ G})
...

P ({〈I, gtK〉 | g ∈ G})

 . (2)

So far, this analysis has only applied to compact groups. Essentially the only interesting one is in-plane
rotation. We need an additional idea in order to consider more general groups: Most transformations
are generally only observed through a range of transformation parameters. For example, in principle,
one could translate arbitrary distances. But in practice, all translations are contained within some finite
window. That is, rather than considering the full orbit under the action of G, we consider partial orbits
under the action of a subset G0 ⊂ G (note: G0 is not a subgroup).

We can now define the basic module that will repeat through the hierarchy. As mentioned in the main
text, an HW-module consists of one C-unit and all of its afferent S-units. For an image I, the output
of the k-th HW-module is µk(I) = P ({〈I, gtk〉) | g ∈ G0}). The subset G0 is called the HW-module’s
pooling domain. Note that if G0 is a set of translations the pooling domain has the same interpretation
as a spatial region as in HMAX.

Consider, for simplicity, the case of 1D images (centered in zero) transforming under the 1D locally
compact group of translations. What are the conditions under which an HW-module will be invariant
over the range G0 = [−b, b]? Let P (·) :=

∑
x∈[−b,b] η(·), where η is a positive, bijective function. The

k-th component of the signature vector will then be

µk(I) =
∑

x∈[−b,b]

η
(
〈I, Txtk〉

)
where Tx is the operator acting on a function f as Txf(x′) = f(x′−x). Suppose we transform the image
I (or equivalently, the template) by a translation of x̄ > 0, implemented by Tx̄. Under what conditions
does µk(I) = µk(Tx̄I)? Note first that 〈I, Txtk〉 = (I ∗ tk)(x), where ∗ indicates convolution. By the
properties of the convolution operator, we have [(Tx̄I) ∗ tk](x) = Tx̄(I ∗ tk)(x) which implies

supp[(Tx̄I) ∗ tk] = Tx̄supp(I ∗ tk).

This observation allows us to write a condition for the invariance of the signature vector components with
respect to the translation Tx̄ (see also Fig. 2). For a positive nonlinearity η, (no cancelations in the sum)
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and bijective (the support of the dot product is unchanged by applying η) the condition for invariance is:

Tx̄supp(〈I, Txtk〉) ⊆ [−b, b] (3)

Figure 2. Localization condition of the S-unit response for invariance under the transformation Tx̄

Eq. 3 is a localization condition on the S-unit response. It is necessary and sufficient for invariance.
In this case, eq. (1) is trivial since we are considering group transformations.

1.2 The second regime: class-specific invariance

So far, we have explained how the localization properties of the S-response allow invariance in the case
of partially observed group transformations. Next, we show how localization still enables approximate
invariance (ε-invariance) even in the case of non-group (smooth) transformations. However, as will be
shown below, in order for eq. (1) to be (approximately) satisfied, the class of templates needs to be much
more constrained than in the group case.

Consider a smooth transformation parametrized by r ∈ R, Tr. Its Taylor expansion w.r.t. r around,
e.g., zero is:

Tr(I) = T0(I) + JI(I)r +O(r2) = I + JI(I)r +O(r2) = LI
r(I) +O(r2). (4)

where JI is the Jacobian of the transformation T , and LI(·) = e(·)+JI(·)r. The operator LI corresponds
to the best linearization around the point r = 0 of the transformation Tr. Let R be the range of the
parameter r such that Tr(I) ≈ LI

r(I). If the localization condition holds for a subset of the transformation
parameters contained in R, i.e.

〈TrI, tk〉 ≈
〈
LI
rI, tk

〉
= 0, r 6∈ R, (5)

and as long as the pooling range P , in the r parameter is chosen so that P ⊆ R, then we are back in the
group case. Thus the same reasoning used above for translation will still apply.

However this is not the case for eq. (1). The tangent space of the image’s orbit is given by the
Jacobian, and it clearly depends on the image itself. Since the tangent space of the image and of the
template will generally be different (see Fig. 3), this prevents eq. (1) from being satisfied. More formally,
for r ∈ R: 〈

LI
r(I), tk

〉
=
〈
I, [LI

r ]−1tk
〉
⇔ LI

r = Ltk
r .

That is, eq. (1) is only satisfied when the image and template “transform the same way” (see Fig. 3).
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Figure 3. The Jacobians of the orbits of the image around the point p and the template must be
approximately equal for eq. (1) to hold in the case of smooth transformations.

To summarize, the following three conditions are needed to have invariance for non-group transfor-
mations:

1. The transformation must be differentiable (the Jacobian must exist).

2. A localization condition of the form in eq. (5) must hold to allow a linearization of the transforma-
tion.

3. The image and templates must transform ”in the same way”, i.e. the tangent space of their orbits
(in the localization range) must be equal. This is equivalent to JI ≡ J tk .

Remark: The exposition of the theory given here is specialized for the relevant case of the general
theory. In general, we allow each “element” of the signature (as defined here) to be a vector representing
a distribution of one-dimensional projections of the orbit. See [2] for details.
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2 Illumination invariance

Figure 4. Class-specific transfer of illumination invariance. Bottom panel (II): Example images from the three
classes. Top panel (I): The left column shows the results of a test of illumination invariance on statues of heads
made from different materials (class A), the middle column shows results for class B and the right column shows
the results for class C. The view-based model (blue curve) was built using images from class A in the top row,
class B in the middle row, and class C in the bottom row. The abscissa of each plot shows the maximum
invariance range (arbitrary units of the light source’s vertical distance from its central position) over which
target and distractor images were generated. The view-based model was never tested on any of the images that
were used as templates. Error bars (+/- one standard deviation) were computed over 20 cross validation runs
using different choices of template and test images.
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Illumination is also a class-specific transformation. The appearance of an object after a change in lighting
direction depends both on the object’s 3D structure and on its material properties (e.g. reflectance,
opacity, specularities). Figure 4 displays the results from a test of illumination-invariant recognition on
three different object classes which can be thought of as statues of heads made from different materials—
A: wood, B: silver, and C: glass. The results of this illumination-invariance test follow the same pattern
as the 3D rotation-invariance test. In both cases the view-based model improves the pixel-based models’
performance when the template and test images are from the same class (fig. 4—plots on the diagonal).
Using templates of a different class than the test class actually lowered performance below the pixel-
based model in some of the tests e.g. train A–test B and train B–test C (fig. 4—off diagonal plots). This
simulation suggests that these object classes have high ψ with respect to illumination transformations.
However, the weak performance of the view-based model on the silver objects indicates that it is not as
high as the others (see the table below). This is because the small differences in 3D structure that define
individual heads give rise to more extreme changes in specular highlights under the the transformation.

Object class Transformation ψ
Glass statues illumination 0.56320
Sliver statues illumination 0.35530
Wood statues illumination 0.53990

Table 1. Table of illumination transformation compatibilities
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3 Pose-invariant body recognition

Figure 5. A. Example images for the pose-invariant body-recognition task. The images appearing in the
training phase were used as templates. The test measures the model’s performance on a same-different task in
which a reference image is compared to a query image. ‘Same’ responses are marked correct when the reference
and query image depict the same body (invariantly to pose-variation).
B. Model performance: area under the ROC curve (AUC) for the same-different task with 10 testing images.
The X-axis indicates the number of bodies used to train the model. Performance was averaged over 10
cross-validation splits. The error bars indicate one standard deviation over splits.

Let B = {b1, b2, ..., bn} be a set of bodies and P = {p1, p2, ..., pn} be a set of poses. Let d be the
dimensionality of the images. We define the rendering function tp : B → Rd. In words, we say tp[b]
renders an image of body b in pose p. In that case the argument b is the template and the subscript p
indicates the transformation to be applied.

We obtain the signature vector µ : X → Rm by pooling the inner products of the input image with
different renderings of the same template.

µ(x) =


max(〈I, t1(τ1)〉, 〈I, t2(τ1)〉, . . . , 〈I, tn(τ1)〉)
max(〈I, t1(τ2)〉, 〈I, t2(τ2)〉, . . . , 〈I, tn(τ2)〉)

...
max(〈I, t1(τm)〉, 〈I, t2(τm)〉, . . . , 〈I, tn(τm)〉)

 (6)

As in some HMAX implementations (e.g., Serre et al. (2007) [8]), we used a Gaussian radial basis
function for the S-unit response. It has similar properties to the normalized dot product.

〈I, ti(τj)〉 = exp{σ ∗
∑

((I − ti(τj))2)} (7)
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Where σ is the Gaussian’s variance parameter.
The class-specific layer takes in any vector representation of an image as input. We investigated two

hierarchical architectures built off of different layers of the HMAX model (C1 and C2-global) [8]—referred
to in fig. 5 as the V1-like and IT-like models respectively.

For the pose-invariant body recognition task, the template images were drawn from a subset of the
44 bodies—rendered in all poses. In each of 10 cross-validation splits, the testing set contained images
of 10 bodies that never appeared in the model-building phase—again, rendered in all poses (fig. 5).

The HMAX models perform almost at chance. The addition of the class-specific mechanism sig-
nificantly improves performance on this difficult task. That is, models without class-specific features
were unable to perform the task while class-specific features enabled good performance on this difficult
invariant recognition task (fig. 5).

Downing and Peelen (2011) argued that the extrastriate body area (EBA) and fusiform body area
(FBA) “jointly create a detailed but cognitively unelaborated visual representation of the appearance
of the human body”. These are perceptual regions—they represent body shape and posture but do
not explicitly represent high-level information about “identities, actions, or emotional states” (as had
been claimed by others in the literature [9]). The model of body-specific processing suggested by the
simulations presented here is broadly in agreement with this view of EBA and FBA’s function. It
computes, from an image, a body-specific representation that could underlie many further computations
e.g. action recognition, emotion recognition, etc.

4 Development of domain-specific regions

Figure 6. Two factors are conjectured to influence the development of domain-specific regions.

We consider three different arbitrary choices for the distributions of objects from five different categories:
faces, bodies, vehicles, chairs, and animals (see table 2). Importantly, one set of simulations used statistics
which were strongly biased against the appearance of faces as opposed to other objects.

Name of simulation Faces Bodies Animals Chairs Vehicles
A. “Realistic” 76 32 16 16 16
B. Uniform 30 30 30 30 30
C. Biased against faces 16 32 36 36 36

Table 2. Numbers of objects used for each simulation. In the “realistic” simulation, there were proportionally
more faces.
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Figure 7. Example object videos (transformation sequences) used in the ψ-based clustering experiments.
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Figure 8. Multidimensional Scaling (MDS) [10] visualizations of the object sets under the
ψ(A,B)-dissimilarity metric for the three object distributions: A. “realistic”, B. uniform, and C. biased against
faces (see table 2).
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Figure 9. The percentage of objects in the first N clusters containing the dominant category object (clusters
sorted by number of objects in dominant category). A, B and C are respectively, the “realistic” distribution,
uniform distribution, and the biased against faces distribution (see table 2)). 100% of the faces go to the first
face cluster—only a single face cluster developed in each experiment. Bodies were more “concentrated” in a
small number of clusters, while the other objects were all scattered in many clusters—thus their curves rise
slowly. These results were averaged over 5 repetitions of each clustering simulation using different randomly
chosen objects.
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Figure 10. The classification performance on face recognition, a subordinate-level task (top row) and car vs.
airplane, a basic-level categorization task (bottom row) using templates from each cluster. 5-fold
cross-validation, for each fold, the result from the best-performing cluster of each category is reported. A, B and
C indicate “realistic”, uniform, and biased distributions respectively (see table 2). Note that performance on the
face recognition task is strongest when using the face cluster while the performance on the basic-level car vs.
airplane task is not stronger with the vehicle cluster (mostly cars and airplanes) than the others.
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5 Supplementary methods

5.1 Stimuli

Illumination
Illumination: Within each class the texture and material properties were exactly the same for all ob-

jects. We used Blender to render images of each object with the scene’s sole light source placed in different
locations. The 0 position was set to be in front of the object’s midpoint; the light was translated verti-
cally. The most extreme translations brought the light source slightly above or below the object. Material
data files were obtained from the Blender Open Material Repository (http://matrep.parastudios.de/). 40
heads were rendered with each material type. For each repetition of the experiment, 20 were randomly
chosen to be templates and 20 to be testing objects. Each experiment was repeated 20 times with differ-
ent template and testing sets.

Bodies / pose
DAZ 3D Studio was used to render each of 44 different human bodies under 32 different poses, i.e.,

44*32 =1408 images in total.

5.2 Body-pose experiments

For the body-pose invariance experiments (fig. 5), the task was identical to the test for unfamiliar faces
and novel object classes. The same classifier (Pearson correlation) was used for this experiment. Unlike
rotation-in-depth, the body-pose transformation was not parameterized.

5.3 Clustering by transformation compatibility

Pseudocode for the clustering algorithm is given below (algorithm 1).
Let Ai be the ith frame of the video of object A transforming and Bi be the ith frame of the video of

object B transforming. The Jacobian can be approximated by the “video” of difference images: JA(i) =
|Ai−Ai+1| (∀i). The “instantaneous” transformation compatibility is ψ(A,B)(i) := 〈JA(i), JB(i)〉. Thus
for a range of parameters i ∈ R = [−r, r], the empirical transformation compatibility between A and B is

ψ(A,B) :=
1

|R|

r∑
i=−r

〈JA(i), JB(i)〉 . (8)

The transformation compatibility ψ of a cluster C was defined as the average of the pairwise compat-
ibilities ψ(A,B) of all objects in C.

ψ(C) := mean(ψ(A,B)) for all pairs of objects (A,B) from C. (9)
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Algorithm 1 Iterative clustering algorithm interpreted as a model of ventral stream development

Input: All Objects: O, ith Object: Oi where i = 1...N , Threshold: T )
Output: ClusterLabels

ClusterLabels(1) = 1
ψ = computeCompatibility(ClusterLabels)
for i = 2 to N do
ψ = computeCompatibilityWithEveryCluster(i, O, ClusterLabels)
[MaxValue MaxIndex] = max(ψ)
if MaxValue > T then
ClusterLabels(i) = MaxIndex //Assign to the cluster with the highest compatibility.

else
ClusterLabels(i) = max(ClusterLabels) + 1 //Create a new cluster

end if
ψ = updateCompatibility(ψ, CurrentClusterCompatibility, ClusterLabels(i))

end for

Function computeCompatibilityWithEveryCluster(IDX,AllObjects,ClusterLabels)
//Initialize ψ as an empty array of length #Clusters.
for i = 1 to #Clusters do
Objects = GetObjectsFromCluster(i, AllObjects, ClusterLabels)
for j = 1 to #Objects do

tmpArray(j) = compatibilityFunction(AllObjects(IDX), Objects(j))
end for
ψ(i) = mean(tmpArray);

end for
Return ψ
EndFunction
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