
S1 Text: Model formulation, Gibbs sampling algorithms, and gIVH calculations for certain
classes and extensions of the generalized linear model

In this paper, we restrict consideration to statistical models for ecological prediction to

those that can be written with the form

Yi ∼ fY (g−1(µi)), (S1.1)

where µi = ξi + εi, fY denotes a probability density or mass function (e.g. Bernoulli,

Poisson), g gives a link function, and ξi is a linear predictor. Many models can be fit with

εi = 0 (such as many frequentist generalized linear and generalized additive models), but

the Bayesian models that we develop subsequently involve the specification

εi ∼ Normal(0, τε) where τε is a precision parameter. This specification is doubly stochastic,

in the sense that we assume error associated with fY as well as in the location parameter

µi. This setup can be useful computationally, and can also be used to approximate singly

stochastic system by setting τε to a large value. For instance, models for count data often

assume a Poisson error structure with a log link function to ensure that the Poisson

intensity parameter is greater than zero. In this case, we would specify

Yi ∼ Poisson(exp(ξi + εi)),

a configuration known as a log-Gaussian Cox process. We now describe how different

classes of statistical models can be developed depending on how one structures the linear

predictor, ξi.
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1 Models

1.1 Generalized linear models (GLMs)

Generalized linear models (McCullagh and Nelder 1989) are one of the simplest (and most

often used) statistical models used by ecologists to make spatial predictions. In GLMs, the

linear predictor is a simple linear function of gathered covariates (including possible

polynomial terms and interactions). Statisticians often describe this relationship by

ξ = Xβ, which is written in matrix notation. In particular, ξ gives a vector of linear

predictor values (one for each data point being analyzed), β gives a vector of regression

coefficients, and X is a design matrix which includes all explanatory variables (and often a

column vector of ones to represent an intercept).

1.2 Generalized additive models (GAMs)

Although one can allow nonlinear relationships between response variables and regressors

by including polynomial terms in the design matrix of a GLM, these need to be

pre-selected by the analyst and it is often unclear how many such terms one should include.

Generalized additive models (GAMs; Hastie and Tibshirani 1999, Wood 2006) build upon

generalized linear models, but instead allow smooth relationships between the dependent

and independent variables using flexible functions such as splines. Such models have been

employed in a number of spatial prediction scenarios, including transect sampling models

for animal abundance (Hedley and Buckland 2004) and SDMs (Guisan et al. 2002). For

instance, animal density or presence can be modeled as a smooth, unknown function of a

habitat covariate.

There are a number of ways smooth relationships can be modeled, depending upon

the type of basis function employed (e.g. cubic smoothing or thin plate splines). Regardless

of basis choice, it is often possible to write GAMs by substituting the following linear
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predictor into Eq. S1.1:

ξ = Xβ + Kα (S1.2)

Here, the component Xβ correspond to fixed effects in the usual GLM sense (which may or

may not be modeled), K represents a smooth basis matrix, and α is a vector of additional

parameters. Our main point in writing the GAM as in Eq. S1.2 is to emphasize the

structural similarity between GLMs and certain classes of GAMs. In particular, we can

rewrite Eq. S1.2 as

ξ = Xaugβaug, (S1.3)

where Xaug = [X K] (i.e., concatenating X and K horizontally), and βaug = [β α]′ (the

subscript aug denotes augmentation).

1.3 Introducing spatial and/or temporal autocorrelation:

spatio-temporal regression models (STRMs)

The previous two modeling frameworks (GLMs and GAMs) do not acknowledge spatial

autocorrelation above and beyond that induced by modeled covariates. However, it is

common for residuals from GLM and GAM model fits to include spatial autocorrelation,

which violates their common assumption of independently distributed error (Legendre

1993, Lichstein et al. 2002). GLMs and GAMs that display residual autocorrelation should

be interpreted with caution, as they will tend to have overstated precision and may even be

biased. In such situations, analysts often employ spatial regression models which explicitly

account for spatial autocorrelation above and beyond that explained by modeled covariates.

There are a variety of ways spatial autocorrelation can be included in regression

models, depending on (i) the spatial support (i.e., continuous vs. discrete), and (ii) the
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particular mechanism used to impart correlation. Here, we shall focus on areal models for

discrete spatial support, as our impression is that these are more commonly employed in

ecological studies. Such models require that data are aggregated at the level of some

sample unit (plots, grid cells, etc.). Spatio-temporal regression models (STRMs) for areal

data are often specified in a similar fashion to GLMs and GAMs:

ξ = Xβ + η, (S1.4)

where η represent spatially autocorrelated effects. In this treatment we shall limit

consideration one approach for inducing spatial autocorrelation in η: restricted spatial

regression (RSR; Reich et al. 2006, Hodges and Reich 2010, Hughes and Haran 2013).

The RSR approach to spatial regression uses a reduced-rank version of the popular

intrinsic conditionally autoregressive (ICAR; Besag and Kooperberg 1995, Rue and Held

2005) model for spatial random effects, reparameterized so that basis vectors are

orthogonal to the main effects of interest. This approach has generated substantial recent

interest, as fixed effects retain primacy in explaining variation in the ecological process of

interest and problems with spatial confounding between fixed and random effects are

eliminated. As such, spatial random effects are only used to account for residual

autocorrelation (Reich et al. 2006, Hodges and Reich 2010) and the decision to incorporate

spatial autocorrelation has little effect on the point estimates of fixed effects. In addition,

reduced dimension spatial models such as RSR lighten computational burden while still

accounting for course-scale spatial autocorrelation (see e.g. Latimer et al. 2009, Wikle 2010,

Hughes and Haran 2013). This approach works by reformulating the spatial random effects

in Eq. S1.4 as η = Kα, where α is a vector of m random effects in a reduced dimension

subspace. The matrix K can be constructed as follows (Hughes and Haran 2013):

1. Define the residual projection matrix P⊥ = I−X(X′X)−1X′

2. Calculate the Moran operator matrix Ω = JP⊥WP⊥/1′W1, where J is the number
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of areal survey units

3. Define K as an (n×m) matrix, where the columns of K are composed of the

eigenvectors associated with the largest m eigenvalues of Ω. Hughes and Haran

(2013) used simulation to explore a range of such values and concluded m = 50− 100

should suffice for most applications.

Here, I an identity matrix, 1 is a column vector of ones, and W represents an association

matrix describing the spatial neighborhood structure of sampling units. For instance, for a

first order neighborhood structure, W would include a 1 for all rows i and columns j where

sampling unit i and j are neighbors (see Rue and Held 2005, for alternative association

matrices).

2 Gibbs sampling

We now describe methods for conducting Bayesian analysis for the GLM and STRM

models described above (note that we used the mgcv R package of Wood (2006) to conduct

frequentist analysis of the GAM model, as described in the next section). We utilize Gibbs

sampling, characterized by cyclically sampling groups of parameters according to their

so-called full conditional distributions conditionally on data and other parameters (Gelman

et al. 2004). In some cases, we are able to solve for full conditional distributions

analytically and to sample from known families of probability distributions; in others, we

resort to Metropolis-Hastings steps.

2.1 Gibbs sampling for the GLM model

Our Gibbs sampler for the GLM model consists of three sets of parameter updates (1)

regression parameters (β), (2) error precision (τε), and (3) latent log-density (µ).

Sampling from [β|·]
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Setting the prior for the suite of regression parameters as [β] =MVN (0, (τβX
′X)−1)

results in the full conditional distribution

[β|·] ≡ N ((X′X)−1X′µ, (X′X)−1(τε + τβ)−1).

We set τβ = 0.01 for applications described in this paper.

Sampling from [τε|·]

Specifying a conjugate Gamma(a, b) prior for the precision parameter leads to a full

conditional that is also Gamma distributed:

[τε|·] ≡ Gamma(0.5n+ a, 0.5∆′∆ + b), (S1.5)

where ∆ = µ−Xβ. For applications in this paper we set a = 1.0 and b = 0.01. This

selection admits a large range of permissable parameter values while maintaining flat

probability mass near the origin.

Sampling from [µ|·]

Although µ could potentially be integrated out of the likelihood, its inclusion allows for

easier computation of full conditionals for β and τε (and for other full conditionals once the

model is expanded, for example, to GAMs and STRMs). During the main MCMC phase,

the µ only need to be updated for grid cells that are exposed to sampling (see a subsequent

section for information on posterior prediction for details on unsampled areas). The full

conditional for µs in a given grid cell s is given by

[µs,t|·] ∝ N (µs; Xsβ, τ
−0.5
ε )× Poisson(Cs, exp(os + µs)),

where Xs gives the sth row of the design matrix and os is an offset. For our examples,

quadrats are configured to represent 10% of a grid cell, cell os = log(0.1). We use a

Metropolis-Hastings step to sample from [µs,t|·].
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2.2 Gibbs sampling for the GAM model

We used a Gibbs sampler for the GAM model that looks very familiar to that for the GLM

model.

Sampling from [τε|·]

Assuming a Gamma(a, b) prior, the full conditional for τε is once again given by Eq. S1.5.

In this case, ∆ = µ−Xβ −Kα.

Sampling from [µ|·]

The full conditional for µs in a given grid cell s is given by

[µs,t|·] ∝ N (µs; Xβ + Ksα, τ
−0.5
ε )× Poisson(Cs, exp(os + µs)),

where Ks gives the sth row of K.

Sampling from [α|·]

We impose a Gaussian prior on smoothing kernel weights, α ∼ N (0, τ−1α ). Like β, the

resulting full conditional is once again in closed form:

[α|·] ≡MVN ((K′K)−1K′(µ−Xβ), (K′K−1(τε + τα)−1).

We set τα = 0.01 in all subsequent applications.

2.3 Gibbs sampler for the STRM model

The Gibbs sampler for the RSR version of the STRM model consists of the following:

Sampling from [β|·]

Using the same prior as for the GLM results in the full conditional distribution

[β|·] ≡ N ((X′X)−1X′(µ−Kα), (X′X)−1(τε + τβ)−1).

Sampling from [µ|·]
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The full conditional for µs in a given grid cell s is given by

[µs,t|·] ∝ N (µs; Xsβ + Ksα, τ
−0.5
ε )× Poisson(Cs, exp(os + µs)),

where Ks gives the sth row of K.

Sampling from [τε|·]

The full conditional is the same as for the GAM model with the replacement

∆ = µ−Xβ −Kα.

Sampling from [α|·]

In the RSR model, the implied prior for reduced dimension spatial effects is

α ∼MVN (0, τ−1η K′QK). The resulting full conditional is

[α|·] = MVN (M,Σ), where

Σ−1 = K′Kτε + τηK
′QK and

M = ΣτεK
′(µ−Xβ).

See for example, Conn et al. (2014).

Sampling from τη|·]

Using a conjugate Gamma(a, b) prior on τη, we have

τη ∼ Gamma(0.5m+ a, 0.5α′K′QKα + b).

Here, m is the number of α parameters.

2.4 Generating posterior predictions

If all we wanted to do was to estimate regression coefficients, the previous samplers would

suffice. However, we typically also wish to predict animal abundance across the landscape

to come up with a total abundance estimate and produce a density map. Fortunately, this
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is easy to do using posterior prediction, which consists of the following steps:

1. For each of n samples (where n is the desired posterior predictive sample size), choose

an iteration of the MCMC sampler randomly with replacement (call this iteration t).

2. Label the tth sample of α, β, τε, and µ as α(t), β(t), τε
(t), and µ(t), respectively.

Recall that µ(t) is only available for sampled grid cells.

3. For unsampled grid cells, generate µ(t) ∼ N (Xβ(t) + Kα(t), τ
(t)
ε )

4. Sample N(t) ∼ Poisson(µ(t)), where N(t) is a vector of posterior predictions across the

landscape.

5. Compute a posterior prediction for total abundance as N (t) =
∑

sN
(t)
s .

3 Frequentist analysis using mgcv package

In this section, we describe analysis using the mgcv R package (Wood 2006), and how the

gIVH can be calculated conditioned on a fitted GAM model. In particular, we calculate

that gIVH using prediction variance with the following steps:

1. Fit a GAM model using the gam function. For this presentation, we will assume this

object is given the name “gam.fit.” If the proportion of each sample unit (e.g., grid

cell) that is surveyed is less than 1.0, an offset should be included in the formula

object required by the gam function. For instance, a count model might specify a

formula object such as count ~offset(log(Offset)) + s(my.cov,5). In this case

Offset is a vector holding the proportion of each sample unit that is surveyed.

2. Extract the augmented design matrix Xaug from Eq. S1.3 for observed data using the

predict.gam function from mgcv. Wood (2006) calls this the “prediction matrix,”

and one can obtain it using the type="lpmatrix" option in predict.gam.

9



3. Calculate variance on the linear predictor scale as Vµ = Xaugv̂ar(β̂aug)X
′
aug, where

v̂ar(β̂aug) is the variance-covariance matrix for estimated parameters (obtainable

using vcov(gam.fit)).

4. Use the delta method (Dorfman 1938) to calculate the variance-covariance matrix on

the response scale (call this Vobs). Set vmax equal to the maximum diagonal element

of Vobs.

5. Assemble a new data.frame (call this Pred), which includes covariate values for all

sample units (grid cells) one wants to make inference to.

6. Perform steps 2-3 from above using this new dataset (using newdata=Pred when

calling predict.gam).

7. Use the delta method (Dorfman 1938) to calculate the variance-covariance on the

response scale for all prediction locations (call this Vpred).

8. All sample units i for which Vpred[i, i] ≤ vmax are included in the gIVH.
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