
S2 Text: Full details of simulation study examining predictive extrapolation

Spatially explicit statistical models are increasingly used to estimate animal abundance

and predict species distributions from count data. We employed a simulation study to

examine the ability of the generalized independent variable hull (gIVH) to diagnose

potential areas across the landscape where predictions of animal abundance using these

models may be problematic, and to determine whether statistical inferences are more

robust when restricted to sampling units within the gIVH. Each simulation replicate

consisted of several steps, including

1. Simulate three hypothetical, statistically dependent, spatially autocorrelated

environmental covariates over a 30×30 grid,

2. Simulate animal abundance across the landscape as a function of environmental

covariates,

3. Simulate surveys across the landscape, including the position of count quadrats and

the resulting animal counts,

4. Estimate animal abundance as a function of two of the environmental covariates

according three different models: a generalized linear model (GLM), a generalized

additive model (GAM), and a spatio-temporal regression model (STRM). For the

latter, only a spatial dimension was modeled. The GLM and STRM models were

specified hierarchically, with MCMC used for posterior simulation. For the GAM, we

conducted a frequentist analysis using the mgcv R package (Wood 2006).

5. Calculate the gIVH using realized posterior variance (i.e. after data were collected

and analyzed).

We now describe each of these tasks and results of the simulation study in further detail

before describing results. All analyses were performed in the R programming environment
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(R Development Core Team 2012); requisite code to recreate analyses is available in the R

package SpatPred that accompanies this article.

1. Simulating environmental covariates

In the real world, different habitat covariates are often correlated with each other (e.g.,

altitude and precipitation), and are often patchily distributed across the landscape (i.e., are

spatially autocorrelated). We thus desired a procedure for generating covariates that would

allow some level of statistical dependence among covariates, together with spatial

autocorrelation. For each simulation, we generated three spatially autocorrelated

environmental covariates using a procedure motivated by linear coregionalization models in

multivariate spatial statistics (e.g. Goulard and Voltz 1992) to impart desired behavior. To

start, we used the R package RandomFields to simulate 10 realizations yi (i ∈ 1, 2, . . . , 10)

of independent, mean-zero random fields over a 30× 30 grid (where the lower case bold

type denotes a vector). Each random field had a stationary, isotropic, exponential

covariance structure, where the covariance C between two survey units (i.e. grid cells) was

a function of the distance r between grid cell centroids, C(r) = exp(r/v). Note that the

distance between horizontally and vertically adjacent grid cell centroids was standardized

to 1.0; the scale parameter v of the exponential covariance function for each random field

was drawn from a Uniform(5,100) distribution to induce heterogeneity in the spatial scale

of each process.

Next, we determined the values of three spatially autocorrelated habitat covariates, zj by

writing them as linear functions of the yi:

zj =
∑
i

ωijyi.

Evidently, the covariance between each induced habitat covariate is a function of the

weights ωij. We used the following strategy to set ωij:

1. Set all ωij = 0
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2. For each desired covariate, j, randomly sample four values uj from the set

{1, 2, . . . , 10} without replacement.

3. For each value u ∈ uj, set ωuj ∼ N (0, 1).

This procedure led to “patchy” habitat covariates with realistic levels of covariation (Fig.

S2.1). To prevent redundancy and collinearity, we rejected and resampled covariate values

(using the same procedure) whenever maximum absolute correlation among covariates was

greater than 0.75.

2. Simulating animal abundance

Given values of the three simulated covariates, we generated a vector of expected

log-abundance in each cell (µ) as

µ = β0 + Xβ + ε,

where the regression coefficients β were each drawn from a N (0, τ) distribution, and the

intercept, β0, was drawn from a N (2.5, 0.25) distribution. The design matrix X was

constructed assuming linear and quadratic effects for each covariate, together with all

one-way interactions for a total of 9 coefficients in addition to the intercept. The precision,

τ , was set to 2.5 for linear fixed effects, and to 5.0 for quadratic effects and one-way

interaction terms. Residual Gaussian errors (ε) were drawn from a N (0, 10) distribution.

Abundance in each cell i was generated as

Ni ∼ Poisson(exp(µi)).

Regression coefficients were redrawn whenever
∑

iNi > 100, 000 or if the 20 most populous

grid cells included > 90% of total abundance to prevent unreasonably high or constricted

distributions of abundance.

3. Simulating sample locations and count data
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For each simulated landscape, we selected 45 grid cells (5%) for sampling. We employed two

possible survey designs: i) spatially balanced sampling using a random tessellation design

(Stevens Jr. and Olsen 2004), and ii) a convenience sample where the inclusion probability

of each grid cell i in the sampling frame was set proportional to exp(−0.2 ∗ ri), where ri is

the Euclidean distance between the centroid of grid cell i and the center of the survey grid.

The latter survey design was meant to approximate the case where there is a “base of

operations” in the middle of the survey grid and more effort is expended close to the center

due to simpler sampling logistics. We configured simulations such that sample quadrats

covered 10% of each targeted grid cell, and generated animal counts for each quadrat j as

Cj ∼ Binomial(Nj, 0.1).

4. Estimating animal abundance

For each set of count data, we attempted to estimate animal abundance over the landscape

using three different models, corresponding to a hierarchical, Bayesian generalized linear

model (GLM; linear, fixed effects of covariates on the log scale), a frequentist generalized

additive model (GAM; smooth effects of covariates on the log scale) fit using mgcv, and a

hierarchical spatial regression model (STRM; with both linear, fixed effects and spatially

autocorrelated random effects). Further details on these models, together with the

procedure used for posterior simulation, are presented in Text S1. For this study, we used

the RSR implementation of the STRM outlined in Text S1. Prior distributions for each

precision parameter, τ , were set to Gamma(1.0, 0.01), which is diffuse while maintaining a

flat shape near the origin. Regression parameters (β) were given vague N (0, τ = 0.01)

priors. For the GLM and STRM, we used the median posterior prediction of total

abundance as a point estimator. For the GAM, we used the sum of predictions of total

abundance on the response scale, obtained using the predict.gam function in mgcv.

5. Calculating the gIVH
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As suggested in Text S1, we used Eq. S1.7 to calculate the gIVH for the GLM and STRM

models, substituting in samples from the joint posterior distribution of each model for θ.

For the GAM, we used the delta method (Dorfman 1938) to calculate prediction variance

on the response scale, conditioning on estimated β values.
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Figure S2.1. For each simulation, three spatially autocorrelated environmental covariates
were generated via a linear coregionalization model. Panels A-C show a single realization
from this procedure, while panel D shows the distribution of sample correlations between
two randomly selected covariates over 1000 simulations.
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