# Supplements: Probabilistic multi-template protein homology modeling

A. Meier, J. Soeding

## 1 Single template neural network



Supplemental Figure 1: Neural network for ranking templates. As input it gets four alignment features and it outputs a predicted TMscore which is then used to find the best template.

### 2 Sequence identity distribution



Supplemental Figure 2: Sequence identity histograms of CASP7 and CASP11 targets. The CASP7 distribution serves as a reference for the benchmark, training and optimization set, the CASP11 distribution is for comparison. In both cases around 80% of the targets have a sequence identity between 5 and 30%.

# 3 Multiple templates



Supplemental Figure 3: Mean number of templates selected by probability based method as a function of sequence identity of the query q to the best template in its list  $tlist_q$ .

#### 4 Additional scores

| Method    |           |                    |            |        |          |        |         |          |        |
|-----------|-----------|--------------------|------------|--------|----------|--------|---------|----------|--------|
| Name      | Templates | Selection          | Restraints | GDT-ha | P-value  | GDT-TS | GDC-all | TM-score | CAD[1] |
| s.1st.old | Single    | first hhsearch hit | Modeller   | 0.443  | -        | 0.614  | 51.88   | 0.684    | 0.572  |
| s.NN.old  | Single    | neural net         | Modeller   | 0.447  | 1.47e-6  | 0.621  | 52.38   | 0.694    | 0.571  |
| s.NN.new  | Single    | neural net         | new        | 0.450  | 0.0008   | 0.623  | 52.79   | 0.698    | 0.575  |
| m.ss.old  | Multiple  | simple selection   | Modeller   | 0.462  | 1.43e-10 | 0.632  | 53.51   | 0.703    | 0.575  |
| m.mt.old  | Multiple  | new multi-template | Modeller   | 0.480  | 2.2e-16  | 0.648  | 55.08   | 0.714    | 0.574  |
| m.mt.new  | Multiple  | new multi-template | new        | 0.492  | 2.2e-16  | 0.660  | 56.30   | 0.725    | 0.583  |

Supplemental Table A: Extended version of Table 1 in the main text containing additional scores (GDT-TS, GDC-all, TM-score, CAD). Average scores for various variations of template selection strategies and restraints used with MODELLER on a test set of 1000 single and multi domain proteins in the pdb20 database. P-values (wrt GDT-ha) are calculated based on a two-sided paired t-test with respect to the previous line. According to Figure 2 in [1], the CAD score has a more limited range than the other scores, which might explain its low variance within our benchmark.

# 5 Alignment features

Supplemental Table B: Alignment features: these features describe query-template alignments in quantitative numbers and help to rate the alignment quality. All are calculated either within HHSEARCH or based on its output.

| FEATURE                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Probability            | The Probability of a template to be a true positive. For the probability<br>of being a true positive, the secondary structure score in column SS<br>is taken into account, together with the raw score. True positives are<br>defined to be either globally homologous or they are at least homologous<br>in parts, and thereby locally similar in structure. More precisely, the<br>latter criterion demands that the MAXSUB score between query and |  |  |  |  |  |  |
|                        | hit is at least 0.1. In almost all cases the structural similarity will we be<br>due to a global OR LOCAL homology between query and template.                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Sum of posteriors      | The sum of all posterior probabilities along the alignment $A$ between query $q$ and template $t$ , i.e.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                        | $\mathrm{SoP} = \sum_{(q_i, t_{i'}) \in A} P(q_i \diamond t_{i'}   q, t),$                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                        | where $P(q_i \diamond t_{i'} q, t)$ is the posterior probability of residues <i>i</i> in the query<br>and <i>i'</i> in the template are correctly aligned. Since SoP is heavily length<br>dependent, it is usually divided by the query length $ q $ .                                                                                                                                                                                                |  |  |  |  |  |  |
| Raw score              | The raw score is what comes out of the (Viterbi) HMM-HMM align-<br>ment excluding the secondary structure score. Informally speaking, it is<br>the sum over the similarities of aligned profile columns minus the gap<br>penalties.                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Posterior of two pairs | We denote the posterior probability for two pairs of residues $(i, i')$ and $(j, j')$ ; $i < j$ , $i' < j'$ being aligned correctly as:                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                        | $P(M_i^q \diamond M_{i'}^t, \ M_j^q \diamond M_{j'}^t   q, t) \tag{1}$                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                        | Due to the computational complexity to accurately calculate (1), we approximate it as:                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                        | $P(M_{i}^{q} \diamond M_{i'}^{t}, M_{j}^{q} \diamond M_{j'}^{t} q, t) \approx \begin{cases} \min\{P(M_{i}^{q} \diamond M_{i'}^{t}), P(M_{j}^{q} \diamond M_{j'}^{t} q, t)\}, \\ \text{if } j - i = j' - i' \\ P(M_{i}^{q} \diamond M_{i'}^{t}) \cdot P(M_{j}^{q} \diamond M_{j'}^{t} q, t), \\ \text{otherwise} \end{cases} $ $(2)$                                                                                                                   |  |  |  |  |  |  |
|                        | I.e. when $(i, i')$ and $(j, j')$ lie on the same diagonal in the dynamic programming matrix, we use the minimum, and otherwise the positions are assumed to be independent and can be multiplied.                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| SS score               | The secondary structure score. This score tells you how well the PSIPRED-predicted (3-state) or actual DSSP-determined (8-state) secondary structure sequences agree with each other. PSIPRED confidence values are used in the scoring, low confidences getting less statistical weight.                                                                                                                                                             |  |  |  |  |  |  |
| Similarity             | The Similarity is the arithmetic mean of the substitution scores between<br>the aligned residue pairs from the query and template.                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |

#### 6 Determination of template weights

In the following, we describe how to calculate template weights given a tree that specifies the evolutionary relations between a query and templates and among all templates. We are interested in the distance between a given pair residues in the query,  $d_0$ , given the corresponding template distances  $d_1, \ldots, d_K$  and the pairwise alignments of the query with each template. We assign each template a weight  $w_k$ ,  $k = 1, \ldots, K$  ( $w_0 = 1$  for the query) that represents the influence of the leaf on the query. We model the distribution of  $d_0$  given by the left tree  $\mathcal{T}$  in Figure 4 as follows (see also in the main text):

$$\frac{P(d_0|d_1,\dots,d_K,w_1,\dots,w_K,\mathcal{T})}{P(d_0)} = \int \frac{P(d_0|d_h,w_0)}{P(d_0)} P(d_h|d_1,\dots,d_K,w_1,\dots,w_K,\mathcal{T}) d(d_h)$$
(3)

where

$$P(d_{h}|d_{1},...,d_{K},w_{1},...,w_{K},\mathcal{T}) = \frac{P(d_{1},...,d_{K}|d_{h},w_{1},...,w_{K},\mathcal{T})P(d_{h})}{P(d_{h}|d_{1},...,d_{K})} = \left(\frac{P(d_{1}|d_{h},\tau_{1})}{P(d_{1})}\right)^{w_{1}}\cdot...\cdot\left(\frac{P(d_{K}|d_{h},\tau_{K})}{P(d_{K})}\right)^{w_{K}}P(d_{h})$$
(4)

As mentioned in the main text, we assume a diffusive behaviour with variance proportional to time  $\tau_k$  (as given by the tree edge lengths):

$$\frac{P(d_k|d_h,\tau_k)}{P(d_k)} \underset{d_h,d_k}{\propto} \exp\left(-\frac{(d_h-d_k)^2}{\tau_k}\right) \quad \forall \ k=0,\dots,K.$$

$$(5)$$

The times  $\tau_k$  are given by the UPGMA clustering. Then (3) becomes with respect to  $d_0$ :

$$\frac{P(d_0|d_1,\ldots,d_K,w_1,\ldots,w_K,\mathcal{T})}{P(d_0)} \propto \int \exp\left(-\sum_{k=0}^K \frac{w_k}{\tau_k} (d_h - d_k)^2\right) \mathrm{d}(d_h) \tag{6}$$

The argument in the exponent can be transformed into a quadratic expression of d:

$$-\underbrace{\left(\sum_{k=0}^{K} \frac{w_{k}}{\tau_{k}}\right)}_{\frac{1}{\tau_{\min}}} d_{h}^{2} + 2\left(\sum_{k=0}^{K} \frac{w_{k}}{\tau_{k}} d_{k}\right) d_{h} - \sum_{k=0}^{K} \frac{w_{k}}{\tau_{k}} d_{k}^{2} = -\frac{1}{\tau_{\min}} \left(d_{h}^{2} - 2\left(\sum_{k=0}^{K} u_{k} d_{k}\right) d_{h} + \sum_{k=0}^{K} u_{k} d_{k}^{2}\right)$$
(7)

where we defined:

$$u_{k} := \frac{w_{k}/\tau_{k}}{\sum_{k'=0}^{K} \frac{w_{k'}}{\tau_{k'}}} = \frac{\tau_{\min}}{\tau_{k}} w_{k}$$
(8)

Completing the square in (7) gives:

$$-\frac{1}{\tau_{\min}} \left( \left( d_h - \sum_{k=0}^K u_k d_k \right)^2 - \left( \sum_{k=0}^K u_k d_k \right)^2 + \sum_{k=0}^K u_k d_k^2 \right)$$
(9)

When integrating over  $d_h$  (eq 6), the factor:

$$\exp\left[-\frac{1}{\tau_{\min}}\left(\sum_{k=0}^{K}u_kd_k^2 - \left(\sum_{k=0}^{K}u_kd_k\right)^2\right)\right]$$
(10)

can be pulled out of the integral (since it is independent of  $d_h$ ); the integral itself yields a constant that does not depend on  $d_0$ . Therefore:

$$\frac{P(d_0|d_1,\ldots,d_K,w_1,\ldots,w_K,\mathcal{T})}{P(d_0)} \propto \exp\left(-\frac{1}{\tau_{\min}}\left(\sum_{k=0}^K u_k d_k^2 - \left(\sum_{k=0}^K u_k d_k\right)^2\right)\right)$$
(11)

Now, we want to find new weights  $w'_k$  such that (see Figure 4; this step describes the transition from the left tree to the right one):

$$\frac{P(d_0|d_1,\dots,d_K,w_1,\dots,w_K,\mathcal{T})}{P(d_0)} \stackrel{!}{\propto} \exp\left(-\sum_{k=1}^K \frac{w'_k}{\tau_0+\tau_k} (d_0-d_k)^2\right)$$
(12)

Here, the last step introduced new weights  $w'_k$  so that the template distances  $d_1, \ldots, d_K$  become directly dependent on the query distance  $d_0$ . Now, an expression for  $w'_k$ ,  $k = 1, \ldots, K$  must be found. We equate the arguments of the exp functions according to eqs. (11) and (12):

$$\sum_{k=0}^{K} u_k d_k^2 - \left(\sum_{k=0}^{K} u_k d_k\right)^2 = \tau_{\min} \sum_{k=1}^{K} \frac{w'_k}{\tau_0 + \tau_k} (d_0 - d_k)^2 + \operatorname{const}(d_0)$$
(13)

We collect terms with equal powers of  $d_0$ :

$$(u_0 - u_0^2)d_0^2 - \left(2u_0\sum_{k=1}^K u_k d_k\right)d_0 = \left(\tau_{\min}\sum_{k=1}^K \frac{w'_k}{\tau_0 + \tau_k}\right)d_0^2 - \left(2\tau_{\min}\sum_{k=1}^K \frac{w'_k}{\tau_0 + \tau_k}d_k\right)d_0 + \operatorname{const}(d_0)$$
(14)

Equating coefficients in eq. (14) leads to:

$$u_{0}(1-u_{0}) = \tau_{\min} \sum_{k=1}^{K} \frac{w'_{k}}{\tau_{0} + \tau_{k}}$$

$$\sum_{k=1}^{K} u_{k} d_{k} = \frac{\tau_{\min}}{u_{0}} \sum_{k=1}^{K} \frac{w'_{k}}{\tau_{0} + \tau_{k}} d_{k}$$
(15)

We demand that the  $w'_k$  are proportional to the old weights  $w_k$ . Then the scaling factors result from equating all individual summands in eq. (15):

$$u_k = \frac{\tau_{\min} w'_k}{u_0(\tau_0 + \tau_k)} \quad \forall k = 1, \dots, K$$
 (16)

and solving for  $w'_k$  gives:

$$w'_{k} = \frac{\frac{1}{\tau_{0}} + \frac{1}{\tau_{k}}}{\frac{1}{\tau_{\min}}} w_{k}$$
(17)



Supplemental Figure 4: Illustration of restructuring a given tree  $\mathcal{T}$  with an hidden node  $d_h$  (left) into one where  $d_1, \ldots, d_K$  directly depend on  $d_0$  (right). This is done by integrating over  $d_h$  and finding appropriate weights  $w'_1, \ldots, w'_K$  so that both trees describe the same distribution.  $t_1, \ldots, t_K$  correspond to distances obtained by UPGMA clustering.

We apply formula (17) iteratively starting from a UPGMA tree rooted at the query until there is only the root node  $d_0$  and directly connected template nodes  $d_1, \ldots, d_K$ , i.e. no more hidden nodes (see also main text). The final  $w_k^{\text{final}}$ ,  $k = 1, \ldots, K$  are used as template weights.

## 7 Additional CASP9 and CASP10 results

Supplemental Table C: CASP9 overall results: official CASP9 results for all servers for both TBM and FM targets. The table is sorted with respect to the sum Z-score column. Time is given in mean minutes per target.

| rank   | server              | dom | sum                       | avg                     | avg              | time [min] |
|--------|---------------------|-----|---------------------------|-------------------------|------------------|------------|
| 1      | OUABK               | 147 | <b>Z-score</b><br>115 788 | <b>Z-score</b><br>0.788 | GDT-TS<br>62.675 | 3358 736   |
| 2      | Zhang-Server        | 147 | 113 949                   | 0.77                    | 62 765           | 3347 378   |
| 2      | BaptorX MSA         | 147 | 103.242                   | 0.713                   | 61.774           | 3586 230   |
| J<br>4 | BaptorX             | 147 | 103.27                    | 0.703                   | 61 731           | 3587 406   |
| 5      | RaptorX Boost       | 147 | 105.01                    | 0.701                   | 61 452           | 2587 241   |
| 5      | HuppedD             | 147 | 99.845                    | 0.079                   | 50 528           | 1 994      |
| 0 7    |                     | 147 | 95.104                    | 0.000                   | 09.020<br>E0.E00 | 4.334      |
| 1      |                     | 147 | 95.104                    | 0.035                   | 09.020<br>50.001 | 4.400      |
| 0      | Cash arman          | 147 | 91.621                    | 0.025                   | 09.001           | 4.390      |
| 9      | Seok-server         | 147 | 09.042                    | 0.009                   | 00.108<br>50.087 | 3733.83    |
| 10     | MULIICOM-CLUSIER    | 147 | 88.944                    | 0.005                   | 09.987           | 1030.440   |
| 11     | BAKER-ROSETTA       | 145 | 87.24                     | 0.602                   | 08.708<br>50.510 | 3018.80    |
| 12     | MULTICOM-REFINE     | 147 | 86.441                    | 0.588                   | 59.519           | 1030.697   |
| 13     | MULTICOM-NOVEL      | 147 | 82.825                    | 0.563                   | 59.371           | 1030.873   |
| 14     | gws                 | 145 | 82.645                    | 0.57                    | 58.931           | 4147.591   |
| 15     | chunk-TASSER        | 147 | 82.609                    | 0.562                   | 58.846           | 3220.107   |
| 16     | Phyre2              | 147 | 78.792                    | 0.536                   | 58.823           | 989.234    |
| 17     | MULTICOM-CONSTRUCT  | 147 | 76.446                    | 0.52                    | 58.703           | 1030.728   |
| 18     | pro-sp3-TASSER      | 147 | 75.358                    | 0.513                   | 58.117           | 3227.174   |
| 19     | MUFOLD-Server       | 147 | 68.676                    | 0.467                   | 56.26            | 3991.966   |
| 20     | FAMSD               | 147 | 68.669                    | 0.467                   | 57.295           | 624.882    |
| 21     | ZHOU-SPARKS-X       | 147 | 68.644                    | 0.467                   | 57.727           | 105.152    |
| 22     | JiangAssembly       | 146 | 68.195                    | 0.467                   | 56.999           | 1197.921   |
| 23     | Pcomb               | 142 | 64.774                    | 0.456                   | 57.809           | 1651.211   |
| 24     | PconsD              | 147 | 64.422                    | 0.438                   | 56.483           | 2454.316   |
| 25     | JiangTHREADER       | 146 | 64.206                    | 0.44                    | 57.096           | 1214.558   |
| 26     | SAM-T08-server      | 140 | 63.211                    | 0.452                   | 56.193           | 1102.817   |
| 27     | PconsM              | 143 | 63.133                    | 0.441                   | 57.598           | 1065.89    |
| 28     | Bilab-ENABLE        | 147 | 62.233                    | 0.423                   | 54.818           | 1106.28    |
| 29     | IntFOLD-TS          | 147 | 58.906                    | 0.401                   | 55.732           | 246.478    |
| 30     | prdos2              | 145 | 58.14                     | 0.401                   | 55.682           | 3690.435   |
| 31     | GSmetaserver        | 137 | 57.376                    | 0.419                   | 57.234           | 1184.296   |
| 32     | BioSerf             | 147 | 56.438                    | 0.384                   | 53.403           | 85.008     |
| 33     | Pcons               | 139 | 56.068                    | 0.403                   | 58.032           | 129.937    |
| 34     | ProQ2               | 141 | 55.475                    | 0.393                   | 56.205           | 1648.542   |
| 35     | CLEF-Server         | 147 | 55.266                    | 0.376                   | 55.543           | 928.274    |
| 36     | chuo-fams           | 147 | 54.884                    | 0.373                   | 55.173           | 876.997    |
| 37     | FALCON-SWIFT        | 147 | 54.55                     | 0.371                   | 55.223           | 863.763    |
| 38     | circle              | 134 | 53.942                    | 0.403                   | 57.968           | 2912.41    |
| 39     | MUFOLD-MD           | 145 | 53.183                    | 0.367                   | 51.588           | 3248.714   |
| 40     | 3D-JIGSAWV4-0       | 144 | 51.932                    | 0.361                   | 54.954           | 299.138    |
| 41     | FFAS03n             | 145 | 51.361                    | 0.354                   | 53.883           | 4.362      |
| 42     | ProfileCRF          | 147 | 51.054                    | 0.347                   | 54.144           | 660.07     |
| 43     | MidwayFoldingServer | 139 | 47.239                    | 0.34                    | 52.137           | 4417.612   |
| 44     | FFAS03              | 139 | 46.974                    | 0.338                   | 54.553           | 3.63       |
| 45     | PconsR              | 142 | 46.515                    | 0.328                   | 55.279           | 2602.051   |
| 46     | 3D-JIGSAWV4-5       | 140 | 46.238                    | 0.33                    | 54.617           | 472.421    |
| 47     | Atome2CBS           | 138 | 45.723                    | 0.331                   | 53.508           | 43.482     |
| 48     | PRECORS             | 140 | 45.272                    | 0.323                   | 52.051           | 3364.469   |
| 49     | Distill             | 147 | 45.181                    | 0.307                   | 53.183           | 139.991    |
| 50     | MUSTER              | 146 | 45.051                    | 0.309                   | 53.06            | 43.5       |
| 51     | FFAS03ss            | 140 | 42.915                    | 0.307                   | 53,905           | 4.664      |
| 52     | FFAS03a             | 141 | 42.615                    | 0.302                   | 54.028           | 4.843      |
| ~ -    |                     |     |                           | ····-                   |                  |            |

| 53 | Wolfson-serv   | 145 | 37.863 | 0.261 | 50.628 | 39.966   |
|----|----------------|-----|--------|-------|--------|----------|
| 54 | LOOPPAustin    | 130 | 36.934 | 0.284 | 55.738 | 159.893  |
| 55 | MUSICSserver   | 141 | 35.939 | 0.255 | 44.402 | 4312.718 |
| 56 | ProQ           | 125 | 34.124 | 0.273 | 54.247 | 1644.804 |
| 57 | PROTAGORAS     | 122 | 33.636 | 0.276 | 53.326 | 132.509  |
| 58 | panther        | 116 | 32.811 | 0.283 | 52.586 | 405.392  |
| 59 | LMUserver      | 130 | 31.22  | 0.24  | 50.316 | 4382.261 |
| 60 | SAM-T02-server | 127 | 30.227 | 0.238 | 53.518 | 261.543  |
| 61 | YASARA         | 76  | 27.587 | 0.363 | 65.559 | 4393.479 |
| 62 | SAM-T06-server | 137 | 26.809 | 0.196 | 49.451 | 1048.062 |
| 63 | Ma-OPUS-server | 147 | 25.127 | 0.171 | 45.441 | 442.9    |
| 64 | FUGUEKM        | 131 | 23.52  | 0.18  | 50.935 | 26.127   |
| 65 | Pushchino      | 123 | 19.839 | 0.161 | 43.831 | 208.166  |
| 66 | m4t2009        | 61  | 19.551 | 0.321 | 65.033 | 93.125   |
| 67 | MUSICS-2S      | 115 | 13.623 | 0.118 | 42.488 | 4114.478 |
| 68 | RaptorX-FM     | 21  | 11.026 | 0.525 | 33.908 | 3601.972 |
| 69 | LenServer      | 126 | 8.831  | 0.07  | 24.987 | 3724.417 |
| 70 | RBO-PROTEUS    | 143 | 8.356  | 0.058 | 27.327 | 1045.136 |
| 71 | rehtnap        | 110 | 4.311  | 0.039 | 39.967 | 588.546  |
| 72 | STAT-PROTEUS   | 127 | 3.527  | 0.028 | 23.841 | 1255.585 |
| 73 | Yangkdd        | 125 | 2.203  | 0.018 | 27.353 | 1235.588 |
| 74 | ConStruct      | 109 | 1.647  | 0.015 | 20.172 | 1031.664 |
| 75 | BHAGEERATH     | 147 | 1.49   | 0.01  | 18.689 | 3761.989 |
| 76 | PLATO          | 111 | 1.422  | 0.013 | 19.647 | 1075.657 |
| 77 | schenk-torda   | 31  | 0      | 0     | 21.913 | 3082.077 |
| 78 | Fortmannserver | 11  | 0      | 0     | 11.537 | 4310.783 |
| 79 | PHAISTOSserver | 1   | 0      | 0     | 18.502 | 4265.172 |
|    |                |     |        |       |        |          |

Supplemental Table D: CASP10 overall results: official CASP10 results for all servers for both TBM and FM targets. The table is sorted with respect to the sum Z-score column. Time is given in mean minutes per target.

| rank | server             | dom | sum<br>Z-scoro | avg<br>Z-scoro | avg<br>CDT-TS | time [min] |
|------|--------------------|-----|----------------|----------------|---------------|------------|
| 1    | Zhang-Server       | 126 | 111.874        | 0.888          | 60.601        | 2457.093   |
| 2    | QUARK              | 126 | 105.531        | 0.838          | 60.204        | 2462.948   |
| 3    | BAKER-ROSETTA      | 126 | 87.787         | 0.697          | 57.542        | 2977.735   |
| 4    | RaptorX-ZY         | 126 | 85.964         | 0.682          | 58.43         | 4250.788   |
| 5    | RaptorX            | 126 | 82.911         | 0.658          | 58.055        | 3606.894   |
| 6    | TASSER-VMT         | 126 | 82.016         | 0.651          | 57.382        | 3307.054   |
| 7    | PMS                | 126 | 78.113         | 0.62           | 57.559        | 4378.698   |
| 8    | HHpred-thread      | 124 | 77.339         | 0.624          | 58.402        | 11.766     |
| 9    | HHpredA            | 126 | 76.748         | 0.609          | 57.563        | 6.486      |
| 10   | HHpredAQ           | 126 | 75.904         | 0.602          | 57.295        | 6.635      |
| 11   | PconsM             | 126 | 73.806         | 0.586          | 56.42         | 1492.026   |
| 12   | Pcons-net          | 125 | 72.226         | 0.578          | 55.072        | 1550.339   |
| 13   | chunk-TASSER       | 126 | 69.35          | 0.55           | 56.323        | 1615.115   |
| 14   | MULTICOM-REFINE    | 125 | 64.94          | 0.52           | 55.848        | 4.192      |
| 15   | MULTICOM-NOVEL     | 119 | 62.581         | 0.526          | 56.532        | 12.892     |
| 16   | MULTICOM-CLUSTER   | 126 | 62.192         | 0.494          | 55.92         | 325.825    |
| 17   | Mufold-MD          | 126 | 59.984         | 0.476          | 54.661        | 4323.788   |
| 18   | MUFOLD-Server      | 127 | 59.031         | 0.465          | 55.057        | 4385.074   |
| 19   | MULTICOM-CONSTRUCT | 121 | 56.558         | 0.467          | 53.665        | 39.283     |
| 20   | Phyre2A            | 126 | 53.903         | 0.428          | 54.419        | 1964.666   |
| 21   | ZHOU-SPARKS-X      | 126 | 50.963         | 0.404          | 53.774        | 34.305     |
| 22   | FALCON-TOPO        | 126 | 50.211         | 0.398          | 53.918        | 338.068    |
| 23   | FALCON-TOPO-X      | 126 | 49.897         | 0.396          | 53.429        | 338.186    |
| 24   | Seok-server        | 126 | 48.788         | 0.387          | 54.303        | 524.859    |
| 25   | PconsD             | 125 | 46.754         | 0.374          | 52.787        | 1465.628   |

| 26 | SAM-T08-server     | 113 | 46.004 | 0.407 | 55.662 | 816.348  |
|----|--------------------|-----|--------|-------|--------|----------|
| 27 | Distill            | 126 | 41.665 | 0.331 | 53.195 | 47.894   |
| 28 | hGen3D             | 126 | 41.652 | 0.331 | 51.579 | 40.483   |
| 29 | NewSerf            | 126 | 38.303 | 0.304 | 51.341 | 70.537   |
| 30 | MUFoldCRF          | 122 | 37.536 | 0.308 | 49.915 | 4359.16  |
| 31 | IntFOLD2           | 126 | 37.447 | 0.297 | 51.66  | 347.904  |
| 32 | samcha-server      | 113 | 36.259 | 0.321 | 47.878 | 797.276  |
| 33 | 3D-JIGSAWV5-0      | 120 | 35.572 | 0.296 | 52.623 | 435.009  |
| 34 | Bilab-ENABLE       | 126 | 33.981 | 0.27  | 49.68  | 1392.564 |
| 35 | chuo-fams-server   | 126 | 33.567 | 0.266 | 52.385 | 4152.381 |
| 36 | FFAS03c            | 125 | 32.699 | 0.262 | 51.309 | 13.063   |
| 37 | slbio              | 118 | 32.017 | 0.271 | 51.111 | 4440.532 |
| 38 | FFAS03mt           | 112 | 31.849 | 0.284 | 54.496 | 12.874   |
| 39 | Distillroll        | 126 | 31.391 | 0.249 | 50.196 | 58.01    |
| 40 | Atome2CBS          | 111 | 29.897 | 0.269 | 52.219 | 69.422   |
| 41 | MATRIX             | 114 | 29.256 | 0.257 | 51.868 | 2992.605 |
| 42 | chuo-repack-server | 126 | 29.161 | 0.231 | 50.55  | 4403.425 |
| 43 | STRINGS            | 111 | 29.006 | 0.261 | 52.524 | 3046.083 |
| 44 | JiangServer        | 126 | 27.694 | 0.22  | 47.726 | 684.899  |
| 45 | IntFOLD            | 126 | 27.456 | 0.218 | 49.152 | 350.171  |
| 46 | FRESSserver        | 126 | 25.429 | 0.202 | 49.235 | 4461.935 |
| 47 | AOBA-server        | 124 | 25.163 | 0.203 | 49.258 | 4083.524 |
| 48 | FFAS03hj           | 112 | 24.636 | 0.22  | 53.387 | 16.303   |
| 49 | JiangFold          | 126 | 24.28  | 0.193 | 46.255 | 901.773  |
| 50 | JiangThreader      | 126 | 23.226 | 0.184 | 45.935 | 53.331   |
| 51 | YASARA             | 77  | 23.22  | 0.302 | 63.858 | 4346.388 |
| 52 | FFAS03             | 111 | 22.475 | 0.202 | 53.557 | 10.829   |
| 53 | UGACSBL            | 109 | 21.864 | 0.201 | 53.247 | 1632.667 |
| 54 | GSmetaserver       | 74  | 20.817 | 0.281 | 56.069 | 834.386  |
| 55 | SAM-T06-server     | 112 | 19.728 | 0.176 | 49.373 | 387.024  |
| 56 | BhageerathH        | 125 | 19.132 | 0.153 | 43.315 | 3751.958 |
| 57 | sysimm             | 62  | 17.655 | 0.285 | 55.967 | 642.096  |
| 58 | RBO-MBS            | 121 | 16.504 | 0.136 | 24.44  | 3494.306 |
| 59 | PROTAGORAS         | 100 | 15.66  | 0.157 | 53.795 | 366.478  |
| 60 | RaptorX-Roll       | 20  | 14.757 | 0.738 | 25.77  | 213.993  |
| 61 | RBO-i-MBS          | 121 | 14.243 | 0.118 | 24.634 | 3494.168 |
| 62 | panther            | 94  | 13.211 | 0.141 | 49.135 | 1635.295 |
| 63 | RBO-MBS-BB         | 121 | 9.749  | 0.081 | 25.484 | 3492.71  |
| 64 | RBO-i-MBS-BB       | 121 | 9.633  | 0.08  | 24.639 | 3493.005 |
| 65 | HOMER              | 93  | 5.569  | 0.06  | 41.815 | 166.603  |
| 66 | Lenserver          | 40  | 2.268  | 0.057 | 27.084 | 4232.178 |
| 67 | confuzz3d          | 46  | 0.676  | 0.015 | 22.026 | 3993.645 |
| 68 | confuzzGS          | 58  | 0.388  | 0.007 | 27.818 | 4025.334 |
| 69 | Bhageerath         | 5   | 0.185  | 0.037 | 40.766 | 3854.73  |
|    | 5                  |     |        |       |        |          |

## References

[1] Olechnovic, K. *et al.* (2013) CAD-score: a new contact area difference-based function for evaluation of protein structural models, *Proteins*, **81**, 149–62.