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Supporting Information 
 
SI Materials and Methods 
 
Medicago sterilization and germination. 
 
Unbroken wild type A17 Medicago truncatula seeds are collected and scarified by immersing them in 
concentrated sulphuric acid H2SO4 for 10 min. To ensure that the samples are sterile, the scarified seeds are 
soaked in 10% bleach solution (10% bleach in 0.1% Tween 20; the bleach contains 6% sodium 
hypochlorite) with gentle agitation in laminar flow for 10 min. For imbibition, the seeds are first placed in 
sterile distilled water and left on a shaker for 3 hours. Subsequently, the seeds are incubated at 4°C for 26 
hours. Finally, the seeds are transferred to a petri dish and incubated at 28°C for 18 hours. Petri dishes are 
inverted to encourage growth of straight radicles before transplanting into a transparent growth chamber. 
These imbibition and incubation steps are done in unlit conditions. Between all steps, sterile distilled water 
is used to decant the seeds. This protocol is performed to ensure synchronized germination (see reference 
[31] of main text for further information). 
 
Fahraeus media and Gelzan preparation. 
 
Root growth experiments were carried out with Medicago plants grown in a Fahraeus media (F-media) 
hydrogel. The F-media consisted of: 0.9 mM CaCl2; 0.5 mM MgSO4; 20 µM KH2PO4; 10 µM Na2HPO4; 20 µM 
ferric citrate; 1.0 mM NH4NO3; 33 µg/L MnCl2; 33 µg/L CuSO4; 7 µg/L ZnSO4*7H2O; 100 µg/L H3BO3; 33 
µg/L Na2MoO4; 218 mg/L MES free acid monohydrate; and 2.5 g/L Gelrite (Sigma-Aldrich) dissolved in 
distilled water. The gel solution was autoclaved before solidifying to ensure sterile conditions (see 
reference [31] of main text for further information). To create a mechanical barrier, a glass slide of 
appropriate length was inserted into a Magenta box (Magenta Corp.). The liquid F-media was then poured 
into this transparent growth container and left to solidify so that the glass slide was embedded in the 
hydrogel with a fixed tilt. Medicago seedlings were germinated until root growth was approximately 1 cm. 
They were then transplanted into the container allowing unobstructed vertically aligned growth until the 
root made contact with the glass slide. The Medicago plant was left to grow at room temperature with 12 
hours of light per day. The roots were imaged once they reached a length of about 5-6 cm. 
 
3D imaging setup and root reconstruction. 
 
To acquire data for roots growing on inclined barriers where 𝜃𝜃 > 0°, we used a 3D imaging system 
consisting of a fixed laser sheet and a translational stage enclosed in a light-controlled environment [24] 
(Fig. 1A of main text). Prior to imaging, the growth light is first turned off. The plant specimen, which is 
now under dark conditions, is translated along a linear axis through the laser sheet. While the plant moves 
through the plane of illumination, a digital camera acquires a series of images corresponding to each 
illuminated plane. This image stack is then saved for later analysis and 3D reconstruction with a voxel size 
of  0.1 × 0.1 × 0.2 mm3. Once image acquisition is completed, the stage resets to its initial position, and the 
growth light is returned to its prior state. Using MATLAB's morphological reconstruction toolbox, we are 
able to extract the centerline of the primary root from the raw image data with a spatial resolution of 0.3 
mm (Fig. 2 of main text). For roots growing on a horizontal surface where 𝜃𝜃 = 0°, we acquire image data by 
taking two dimensional (2D) photographs from beneath the transparent growth container. We then apply a 
thresholding filter to extract the centerline with a spatial resolution of 0.15 mm.  
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Fig. S1. Possible mathematical modeling using phase diagrams of root trajectories. 
 
Phase diagrams of root trajectories provide a potential mathematical framework to quantitatively 
understand root behavior. By plotting 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 versus 𝜓𝜓(𝑠𝑠) for 3 roots at 𝜃𝜃 = 10° , 25° and 50° (A-C), we can 

follow the evolution of root curvature in phase space. The black square denotes the starting position of the 
root. To first order approximation, we observed that the phase trajectories eventually settle into a limiting 
ellipse. Therefore, we posit that the root trajectory follows the following ordinary differential equation:  
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+ (𝜓𝜓 − 𝜓𝜓0)2 = 𝐶𝐶2, 

where 𝜓𝜓 denotes the bearing, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 denotes the rate of change of bearing, and 𝐶𝐶1, 𝐶𝐶2, 𝜓𝜓0 are parameters to be 
fitted. Geometrically, 𝐶𝐶1 and 𝐶𝐶2 characterize the wavelength and amplitude of root waving while 𝜓𝜓0 
characterizes the skewing angle. This approach removes the randomness in the switching mechanism, but 
is capable of quantifying the trend observed in root curvature at different tilt angle 𝜃𝜃.  
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Fig. S2. curvature profiles κ(𝑠𝑠) of representative root samples. 
 
Curvature profiles of four representative root samples. The curvature profiles of roots at different 𝜃𝜃’s (A-D) 
are plotted as a function of arclength 𝑠𝑠. The point where each root makes first contact with the tilted plane 
is marked with a black square. 
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Fig. S3. Curvature resolution limit and threshold for defining s0. 
 
The resolution of our 3D imaging and reconstruction technique set a lower limit of 0.5 cm-1 on the 
curvature values that can be reliably measured (red dotted line, A, B). Moreover, samples that clearly 
demonstrate root waving show an initial period of nearly straight growth (Fig. 3A of main text, s < s0). In 
order to eliminate this transient growth period from our analysis, we set a threshold of 1 cm-1 (blue dotted 
line, A, B) for all samples to define the point s0 where root patterns begin to emerge. In the waving regime, 
as illustrated by a representative root at 𝜃𝜃 = 9°  in (A), the first segment of root with curvature magnitude 
greater 1 cm-1 determines the onset of root waving (red square). In addition, we can reliably determine the 
switching points (black squares) because root segments have curvature magnitudes significantly greater 
than the resolution. However, in the skewing regime, as illustrated by a representative root at 𝜃𝜃 = 38°  in 
(B), most segments have curvature values below that of our resolution and hence the switching points 
cannot be reliably determined. Of the 57 roots in the waving regime (6° ≤ 𝜃𝜃 ≤ 28°), 9 roots are omitted 
from analyses that are dependent on reversal events because the root waving onset point s0 cannot be 
determined. In the skewing regime (30° < 𝜃𝜃), 11 out of 22 roots do not have s0 that can be reliably 
identified. Therefore, analyses that are dependent on reversal events are not performed on this group of 
roots. All roots in the coiling regime have an s0 that can be readily determined. 
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Fig. S4. Probability density of switching distance 𝑷𝑷(𝒅𝒅) using maximum likelihood estimation (MLE). 
 
Probability distribution of switching distance 𝑃𝑃(𝑑𝑑) as a function of tilt angle 𝜃𝜃 fit to a gamma distribution 
(A-D).  The gamma distribution is given by 𝑃𝑃(𝑑𝑑;𝐴𝐴,𝐵𝐵) = 𝑒𝑒−𝑑𝑑/𝐵𝐵𝑑𝑑𝐴𝐴−1/𝐵𝐵𝐴𝐴Γ(𝐴𝐴), where A is the shape 
parameter, and B is the scale parameter.  The maximum likelihood estimation (MLE) of the parameters are 
stipulated in the respective plots.  The 95% confidence interval for each parameter and the 𝑅𝑅2 values are 
indicated as well.  For the case of 𝜃𝜃 = 0, we set 𝐴𝐴 = 1 to simplify the gamma distribution to a Poisson 
distribution (negative exponential), which is known to arise in unbiased random walks. 
 
In our analysis of the root switching distance data, we tested the log-normal and gamma distributions.  
While both had comparable fits with R2 > 0.9 on tilted barriers, we find the gamma distribution offers a 
more insightful explanation of root coiling as a memoryless random process on horizontal barriers.  
Moreover, previous studies (see reference [33] and [34] of main text) studying E. coli motion in chemically 
uniform environments found a statistical distribution of run lengths well described by a Poisson 
distribution (i.e., gamma distribution with 𝐴𝐴 = 1), which is analogous to the case of root growth on a 
horizontal barrier where we fit for the same function.  Taken together, the insights and enhanced 
explanatory power of the gamma distribution motivate the analysis presented in the main text.  
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Fig. S5. Histogram of correct and incorrect reversals. 
 
The rate of correct reversal is defined as the probability that an infinitesimal segment of root at a particular 
bearing 𝜓𝜓 will reverse its chirality so that the subsequent root segments will bend in a more downhill 
direction (i.e. decreasing  |𝜓𝜓|, Fig. 5A of main text). To compute this reversal rate, we discretized the root 
into short segments of 0.04 cm long and binned them (blue, A-C). We then calculated the number of root 
segments within each bin that corresponded to correct reversal events (green, A-C). Dividing the number of 
correct reversals by the total number of segments, we obtained the rate of correct reversal (yellow, A-C). 
Due to “grow-and-switch” gravitropism, the rate of reversal graphs in the waving regime exhibit 
increasingly steeper ‘V’ shape curves as 𝜃𝜃 gets larger.  
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Fig. S5. Histogram of correct and incorrect reversals (continued). 
 
Note that at 𝜃𝜃 = 0°, the choice of 𝜓𝜓 = 0° is arbitrary and reversal events are neither correct nor incorrect, 
since there is no gravitational gradient. A similar analysis is performed to the data and the rate of reversal 
shows uniform distribution (D), consistent with expectations based on E. coli 's behavior in a chemically 
isotropic environment. To exclude outlier reversals, we do not include any data point with n=1 for analysis 
in Fig. 5B of main text. 
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Fig. S5. Histogram of correct and incorrect reversals (continued). 
 
Analogous to (A-C)., the rate of incorrect reversal is defined as the probability that an infinitesimal segment 
of root at a particular bearing 𝜓𝜓 will reverse its chirality so that the subsequent root segments will bend in 
a less downhill direction (i.e. increasing  |𝜓𝜓|, Fig. 5A of main text). To compute this reversal rate, we 
discretized the root into short segments of 0.04 cm long and binned them (blue, E-G). We then calculated 
the number of root segments within each bin that corresponded to an incorrect reversal event (cyan, E-G). 
Dividing the number of incorrect reversal event by the total number of segments, we obtained the rate of 
wrong reversal (dark yellow, E-G). We observe that the incorrect reversal rate is centered at 𝜓𝜓 = 0° and the 
distribution gets narrower with increasing 𝜃𝜃. This is consistent with the notion that the root is better able 
to find the downhill direction at large 𝜃𝜃 with less incorrect reversal. 
 
 


