
SI Appendix for: “Genome-wide modelling of
transcription kinetics reveals patterns of RNA
production delays”
Antti Honkela ∗, Jaakko Peltonen † ‡, Hande Topa † , Iryna Charapitsa §, Filomena Matarese ¶, Korbinian Grote ‖, Hendrik
G. Stunnenberg ¶ , George Reid § , Neil D. Lawrence ∗∗ and Magnus Rattray ††

∗Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland,†Helsinki Institute for Information Tech-
nology HIIT, Department of Computer Science, Aalto University, Espoo, Finland,‡School of Information Sciences, University of Tampere, Tampere, Finland,§Institute
for Molecular Biology, Mainz, Germany,¶Radboud University, Department of Molecular Biology, Faculty of Sciences and Faculty of Medicine, Nijmegen, The
Netherlands,‖Genomatix Software GmbH, Muenchen, Germany,∗∗Department of Computer Science, University of Sheffield, Sheffield, UK, and ††Faculty of Life
Sciences, University of Manchester, Manchester, UK

This supplementary file provides detailed information on materi-
als and methods including data acquisition and preprocessing,
differential equation based modelling, Gaussian process based
inference, and filtering of results.

In the following we provide details of data acquisition, processing
of RNA-seq data and filtering of active genes, processing of pol-

II ChIP-seq data, differential equation modelling of the connection
between pol-II and mRNA, Gaussian process based inference of un-
derlying time series, and summarisation and filtering of results. We
then provide an explanation of how synthetic data were used to study
accuracy of parameter estimation for mRNA half life, a measure of
mRNA decay in the differential equation model between pol-II and
mRNA. Lastly, we provide additional figures about tail probabilities
of delays for alternative result filtering choices, an additional figure
about long posterior mean delays with and without annotated exon
skipping, and differences in pre-mRNA accumulation in short and
long delay genes.

Data acquisition
MCF-7 breast cancer cells were treated with estradiol (E2). The cells
were put in estradiol free media for three days. This is defined media
devoid of phenol red (which is estrogenic) containing 2% charcoal
stripped foetal calf serum. The charcoal absorbs estradiol but not
other essential serum components, such as growth factors. This re-
sulted in basal levels of transcription from E2 dependent genes. The
cells were then incubated with E2 containing media, which resulted
in the stimulation of estrogen responsive genes. Measurements were
taken at logarithmically spaced time points 0, 5, 10, 20, . . . , 1280
minutes after E2 stimulation.

At each time point, the pol-II occupancy was measured genome-
wide by ChIP-seq. Raw reads were mapped onto the human genome
reference sequence (NCBI build37) using the Genomatix Mining
Station (software version 3.5.2). The mapping software is an index-
based mapper using a shortest unique subword index generated from
the reference to identify possible read positions. A subsequent align-
ment step is then used to get the highest-scoring match(es) accord-
ing to the parameters used. We used a minimum alignment quality
threshold of 92% for mapping, reads were not trimmed. On average
84% percent of reads could be mapped uniquely.

At each time point, the pre-mRNA and mature mRNA abun-
dances were measured for each human gene by RNA-seq. Total RNA
was isolated and subjected to rRNA depletion with the Ribo-Zero
Magnetic Gold Kit and processed further for strand-specific RNA-
seq. The RNA-seq reads were mapped using Bowtie to a transcrip-
tome constructed from Ensembl version 68 annotation allowing at
most 3 mismatches and ignoring reads with more than 100 align-
ments. The transcriptome was formed by combining the cDNA and
ncRNA transcriptomes with pre-mRNA sequences containing the full

genomic sequence from the beginning of the first annotated exon to
the end of the last annotated exon. On average 84.7% of the RNA-seq
reads were mapped.

All the ChIP-seq and RNA-seq data are available from the NCBI
Gene Expression Omnibus under accession number GSE62789.

RNA-seq data processing
RNA-seq data were analysed at each time point separately using Bit-
Seq (1). The reads were first mapped to human reference transcrip-
tome (Ensembl v68) using Bowtie version 0.12.7 (2). In order to sep-
arate pre-mRNA activity as well, we augmented the reference tran-
scriptome with pre-mRNA transcripts for each gene that consisted of
the genomic sequence from the beginning of the first exon to the end
of the last exon of the gene.

BitSeq uses a probabilistic model to probabilistically assign mul-
timapping reads to transcript isoforms (1), in our case also including
the pre-mRNA transcripts. We obtained gene expression estimates
by adding the corresponding mRNA transcript expression levels. In
addition to the mean expression levels, BitSeq provides variances of
the transcript isoform expression levels. We further used the biolog-
ical variance estimation procedure from BitSeq differential expres-
sion analysis on the estimated gene expression levels by treating the
first three time points (0, 5, 10 min) as biological replicates. Genes
with similar mean expression levels (log-RPKM) were grouped to-
gether such that each group contained 500 genes except for the last
group with 571 genes with the highest expression. Then, the biolog-
ical variances were estimated for each group of genes by using the
Metropolis–Hastings algorithm used in BitSeq stage 2 (1). Biologi-
cal variances for the single measurements were determined according
to the gene expression levels at each time point, where each gene was
considered to belong to the closest gene group according to its ex-
pression level. The observation noise variance for each observation
was defined as the sum of the technical (BitSeq stage 1) and biolog-
ical (BitSeq stage 2) variances, and transformed from log-expression
to raw expression using

σ2
raw = σ2

log exp(µlog)
2. [S1]

Different time points of the RNA-seq time series were nor-
malised using the method of (3) as implemented in the edgeR
R/Bioconductor package (4).

Statistics of RNA-seq mapping and distribution of reads for pre-
mRNA and mRNA transcripts are presented in Tables S2 and S3 as
well as Fig. S9.

Filtering of active genes
We removed genes with no clear time-dependent activity by fitting
time-dependent Gaussian process models to the activity curves and
only keeping genes with Bayes factor at least 3 in favour of the time-
dependent model compared to a null model with no time dependence.
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We also removed genes that had no pol-II observations at 2 or more
time points. This left 4420 genes for which we fitted the models.

Pol II ChIP-seq data processing
The ChIP-seq data were processed into time series by summarising
the pol-II occupancy over time for each human gene (Ensembl ver-
sion 68 annotation was used for gene positions), by a series of steps
as follows.

1. Each gene was divided into 200 bp bins and levels of pol-II activ-
ity were computed at each time point as the total weighted count
of reads overlapping each bin, where each read was weighted by
how many basepairs in the read overlap the bin, as follows. Only
uniquely mapped reads were used. For any read that at least par-
tially overlaps a bin, the number of basepairs overlapping the bin
was added into the activity level of the bin. For any read span-
ning multiple bins, the number of basepairs overlapping each bin
were added into activity of that bin. The Genomatix mapping
software provides alignment scores (values between 0 and 1; with
our threshold only between 0.92 and 1) for mapping reads to the
genome; for any read having alignment score less than 1, the num-
ber of overlapping basepairs added to each bin was multiplied by
the alignment score.

2. A noise removal was then done: a noise level was computed as the
average activity level in 74 manually selected regions from Chro-
mosome 1 that were visually determined to be inactive over the
measurement time points, as follows. The regions were divided
into 200 bp bins, and total weighted counts of reads overlapping
each bin (each read weighted by the number of basepairs over-
lapping the bin) were computed in the same way as for the genes
in the previous step. For each time point, the noise level was
computed as the average activity level over all bins from all 74
regions. The computed noise level was subtracted from the mean
of each bin in each gene, thresholding the result at zero. A list
of the empty regions used is included as a Supplementary Dataset
S1.

3. As the number of ChIP-seq reads collected overall for pol-II
varies between time points, a robust normalisation was done. Af-
ter the previous noise removal step, for each gene g at each time
t we compute the mean of the remaining activity (activity level
after noise removal) over bins of the gene, denoted as rgt. The
activity levels are weighted counts of basepairs from reads over-
lapping the gene; we select genes having sufficient activity, that
is, at least 5 · 200 overlapping basepairs from reads over each 200
bp bin of the gene, on average over the bins. For each gene g let
Tg = {t′ ∈ {5, 10, . . . , 1280 min}|rgt′ > 5 · 200} denote those
time points (except the first time point) where the gene has suf-
ficient activity. For each time point we compute a normalisation
factor of (3)

Ct = Mediang

{
rgt

GeomMeant′{rgt′}

}
.

where Mediang{·} denotes median over genes and
GeomMeant′{rgt′} = (

∏
t′∈Tg

rgt′)
1/|Tg| is the geometric

mean over the time points having sufficient activity for gene g.
The median is computed for time points after the first time point;
for the first time point t = 0 min we set Ct = 1. The factor Ct
normalises all the gene activity levels (weighted read counts) at a
time point downwards if genes at that time point have unusually
many reads, exceeding their (geometric) mean activity level, and
normalises upwards if gene activity levels fall under their mean
activity level.

4. Lastly, time series summaries were computed for pol-II at each
gene. For each gene at each time point t, the mean activity level
(weighted read-count) of pol-II over bins in the 20% section of the

gene nearest to transcription end was computed, normalised by
Ct. This measured pol-II level represents transcriptional activity
that had successfully passed through the gene to the transcription
end site; it is expected to correspond better with mRNA produc-
tion rate than pol-II activity at the transcription start of the gene,
since pol-II near the transcription start site can be in the active or
inactive state and after activation may require a significant time
for transcription to complete.

5. For a small number of genes where the active mRNA transcripts
covered only part of the gene, we considered the area from the
first active exon to last active exon, and summarised the gene us-
ing the 20% section nearest to the end of the area. Active tran-
scripts were defined here as transcripts with a mean of more than
1.1 assigned counts in the BitSeq posterior expression estimates.
BitSeq uses a prior that assigns 1 “pseudo-count” per transcript,
so the active transcripts were only required to have minimal pos-
terior expression that was distinguishable from the prior. A list of
active transcripts is included as Supplementary Dataset S2.

6. Lastly, for mathematical convenience, for each pol-II time series
we subtracted from all time points the minimum value over the
time points.

Differential equation based modelling
We model the role of pol-II as a catalyst of the transcription of DNA
into mRNA as a differential equation for each gene; the differential
equation relates the pol-II time series p(t) of the gene and the corre-
sponding mRNA time series m(t).

Let us assume the momentary pol-II activity directly represents
the momentary rate of transcription, potentially with a delay, and that
the mRNA decays at a constant rate. We model this as a linear differ-
ential equation

dm(t)

dt
= β0 + βp(t−∆)− αm(t) [S2]

where ∆ is a delay parameter between the pol-II activity and the mo-
mentary transcription rate, β0 is a parameter representing the base-
line transcription rate from unobservable pol-II background (base-
line production level of mRNA), β is a parameter representing tran-
scriptional efficiency, that is, sensitivity of the transcription rate to
activity of pol-II, and α is a constant mRNA decay rate parameter
that is related to mRNA half-life t1/2 through α = ln(2)/t1/2.

The momentary mRNA levelm(t) can be solved from the differ-
ential equation to yield the following solution:

m(t) = m0e
α(t0−t)+

β0

α

(
1− e−αt

)
+ βe−αt

∫ t

u=0 min

eαup(u−∆)du [S3]

where pol-II activity is assumed to start at t = 0 min (p(t) =
0 for t < 0 min), t0 � 0 min is the time of the first observation,
andm0 is an initial mRNA abundance at t0 which is inferred as a pa-
rameter of the model. No parametric assumptions are made about the
shape of the pol-II time series function p(t), and the only assumption
about the mRNA level m(t) is that it arises through the differential
equation.

The linear differential equation [S2] and its linear solution oper-
ator [S3] are similar to those used previously in (5–7) except for the
added delay. As in the previous works, the linearity of the solution
operator permits exact joint Gaussian process (GP) modelling over
p(t) and m(t).

Gaussian process inference
We model pol-II and mRNA time series, p(t) andm(t), in a nonpara-
metric fashion which avoids the assumption of a specific parametric
shape for the time series function; instead, we set a GP prior over the
time series functions.
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For each gene, GP inference of the posterior distribution over the
underlying pol-II and mRNA time series can be done in closed form
given fixed values of the differential equation parameters. GP infer-
ence is based on mean and covariance functions. Below we describe
the GP model of pol-II and mRNA, their respective mean functions
and covariance functions, and the cross-covariance function between
pol-II and mRNA. GP inference of the posterior is then a standard
inference equation which we provide for completeness.

The above inference provides a posterior distribution over the
profiles p(t) and m(t) given known values for the differential equa-
tion parameters. However, these values are not known and to infer a
full posterior over both time series and these parameters we carry out
Markov Chain Monte Carlo (MCMC) sampling over the parameter
values, as described in Section “Parameter inference by Hamiltonian
Monte Carlo sampling”.

GP model of pol-II. For each gene, we model the pol-II activity time
series in a nonparametric fashion by applying a GP prior over the
shapes of the time series. Previous similar GP models (5–7) have
used a squared exponential covariance function for p(t), as that al-
lows derivation of all the shared covariances in closed form. This
covariance has the limitation that it is stationary, and functions fol-
lowing it revert to zero away from data. These properties severely
degrade its performance on our highly unevenly sampled data. To
avoid this, we model p(t) as an integral of a function having a GP
prior with a squared exponential covariance: then the posterior mean
of p(t) tends to remain constant between observed data. That is, we
model

p(t) = p0 +

∫ t

u=0

v(t)dt [S4]

where p0 is the initial value at time t = 0 min, and assign a GP prior
with the squared exponential covariance over v(t); as a result p(t)
will also have a GP prior whose covariance function is an integral of
the covariance function of v(t). For mathematical convenience we
assume p(t) = 0 min for t < 0 min, and set the initial observa-
tion time t0 to a sufficiently large value to avoid any discontinuity
resulting from assumption in pol-II or mRNA modeling.

To define the GP prior, we first define the mean function of p(t).
Assume that v(t) is drawn from a zero-mean GP prior with a squared
exponential covariance function kv(t, t′) = Cp · exp(−(t− t′)2/l2)
where Cp is a magnitude parameter and l is a length scale, which has
been parametrised in a non-standard manner to simplify the deriva-
tions. Then E[p(t)] = E[p0] +

∫ t
u=t0

E[v(t)]dt = E[p0] ≡ µp for
t ≥ 0 min.

Next we compute the corresponding covariance function for the
GP prior of p(t). We have

kp(t, t
′) ≡ E[(p(t)−µp)(p(t′)−µp)] =

∫ t

s=0

∫ t′

s′=0

kv(s, s′)dsds′

=

√
πCpl

2

∫ t

s=0

(
erf((t′ − s)/l)− erf(−s/l)

)
ds [S5]

The remaining integral over the erf functions can be computed
using integration by parts. After straightforward manipulation, the
integral becomes

kp(t, t
′) =

Cp
√
πl2

2

(
tlerf (tl) + t′lerf

(
t′l
)

− (t′l − tl)erf
(
t′l − tl

))
+
Cpl

2

2

(
exp

(
−t2l

)
+ exp

(
−(t′l)

2)− exp
(
−(t′l − tl)2)− 1

)
. [S6]

where we denoted tl = t/l and t′l = t′/l for brevity.
The right-hand side is the covariance function kp(t, t′) of the

integrated squared-exponential GP prior for pol-II.

GP model of mRNA. We model the mRNA abundance in a similar
nonparametric fashion as the pol-II activity. Since the mRNA is re-
lated to pol-II through a differential equation, the GP prior of mRNA
can be computed from the GP prior of pol-II through the differential
equation. In particular, as shown in Eq. [S3], the mRNA time series
is an integral of the pol-II time series. Since integration is a linear
operation, the expected mRNA time series is an integral of the ex-
pected pol-II time series; that is, the GP mean function of mRNA is
an integral of the mean function of pol-II, so that

µm(t) ≡ E[m(t)] = m0e
α(t0−t)+

β0

α

(
1− e−αt

)
+ βe−αt

∫ t

u=0

eαuE[p(u−∆)]du

= m0e
−α(t−t0) +

β0

α

(
1− e−αt

)
+ βe−αt

∫ t

u=∆

eαuµpdu

= m0e
−α(t−t0) +

β0

α

(
1− e−αt

)
+
βµp
α

(1− e−α(t−∆)) [S7]

where the third line follows since pol-II activity starts at t = 0 min.
Note that the start of pol-II activity at t = 0 min is for mathematical
convenience, and the initial observation time t0 will be set to a suf-
ficiently large value so that the t − ∆ ≥ 0 min for all t ≥ t0 and
hence observed mRNA values are integrated over active pol-II only
regardless of delay ∆.

We next compute the corresponding covariance function for the
GP prior of mRNA. The covariance function arises from computing
the integral relating mRNA to pol-II as follows:

km(t, t′) ≡ E[(m(t)− µm(t))(m(t′)− µm(t′))]

= E

[(
βe−αt

∫ t

u=0

eαup(u−∆)du− βµp
α

(1− e−α(t−∆))

)
(
βe−αt

′
∫ t′

u′=0

eαu
′
p(u′ −∆)du′ − βµp

α
(1− e−α(t′−∆))

)]
= β2E

[(
e−αt

∫ t

u=∆

eαup(u−∆)du− µp
α

(1− e−α(t−∆))

)
(
e−αt

′
∫ t′

u′=∆

eαu
′
p(u′ −∆)du′ − µp

α
(1− e−α(t′−∆))

)]
[S8]

where the last equality follows since pol-II activity starts at time
0 min. The computation of the integrals follows similar steps as com-
putation of the pol-II GP covariance. The result is

km(t, t′) = km,1(t, t′)+km,2(t, t′)+km,3(t, t′)+km,4(t, t′)
[S9]

where we divided the covariance function into four parts. The first
part is

km,1(t, t′) =

√
πlCpβ

2

2α2

((
t∆ −

1

α
+

exp(−αt′∆)

α

)
erf

(
t∆
l

)
+

(
t′∆−

1

α
+

exp(−αt∆)

α

)
erf

(
t′∆
l

)
−(t∆−t′∆)erf

(
t∆ − t′∆

l

))
[S10]

where t∆ = max(0 min, t−∆). The second part is

km,2(t, t′) =
l2Cpβ

2

2α2

(
exp

(
−
(
t∆
l

)2)
+exp

(
−
(
t′∆
l

)2)
− exp

(
−
(
t∆ − t′∆

l

)2)
− 1

)
. [S11]
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The third part is

km,3(t, t′) = −
√
πlCpβ

2

(
α−3

4
exp(α2l2/4 + α(t∆ − t′∆))

(erf(αl/2 + t∆/l)− erf
(
αl/2 + (t∆ − t′∆)/l)

)
+
α−3

4
exp(α2l2/4−αt′∆−αt∆)

(
erf(αl/2)− erf(αl/2− t′∆/l)

)
− α−3

2
exp(α2l2/4−αt′∆)

(
erf(αl/2)− erf(αl/2− t′∆/l)

))
.

[S12]
The fourth part is

km,4(t, t′) = −
√
πlCpβ

2

(
α−3

4
exp(α2l2/4− α(t∆ − t′∆))(

erf(αl/2 + t′∆/l)− erf(αl/2− (t∆ − t′∆)/l)
)

+
α−3

4
exp(α2l2/4−αt∆−αt′∆)

(
erf(αl/2)− erf(αl/2− t∆/l)

)
− α−3

2
exp(α2l2/4−αt∆)

(
erf(αl/2)− erf(αl/2− t∆/l)

))
.

[S13]

GP joint model.To define the full GP prior over both pol-II and
mRNA, it remains to define the cross-covariance function between
pol-II and mRNA. The full GP covariance is defined by the individ-
ual covariances of pol-II and mRNA and the cross-covariance.

The cross-covariance function between (noiseless) mRNA abun-
dance m(t) at time t and (noiseless) pol-II activity p(t′) at time t′ is
computed with similar steps as the computation of the mRNA covari-
ance function. The result is

kmp(t, t
′) = E[(m(t)− µm(t))(p(t′)− µp(t′))]

= kmp,1(t, t′) + kmp,2(t, t′) + kmp,3(t, t′) [S14]
where for convenience we separated the kernel function into a sum
of three components. The first component part of the kernel can be
written as

kmp,1(t, t′) =

−
√
πβ2

√
Cpl

2α2
exp

((
αl

2

)2

− αt∆ + αt′
)

·
[
erf

(
αl

2
+
t′

l

)
− erf

(
αl

2
+
t′ − t∆

l

)]
−
√
πβ2

√
Cpl

2α2
exp

((
αl

2

)2

− αt∆
)

·
[
erf

(
αl

2
− t∆

l

)
− erf

(
αl

2

)]
. [S15]

The second component can be written as

kmp,2(t, t′) =

−
β2
√
Cpl

2

2α

[
exp

(
−
(
t∆ − t′

l

)2)
− exp

(
−
(
t∆
l

)2)
+ 1− exp

(
−
(
t′

l

)2)]
. [S16]

The third component can be written as

kmp,3(t, t′) = −
√
πβ2

√
Cpl

2α

[
(t∆ − t′ − 1/α)erf((t∆ − t′)/l)

− (t∆ − 1/α)erf(t∆/l)− (t′ + exp(−αt∆)/α)erf(t′/l)

]
.

[S17]

Observation model.In order to fit the models of the pol-II and
mRNA functions to observations, we need an observation model. It
is assumed that we observe noisy values m̃(t) = m(t) + em(t) and
p̃(t) = p(t) + ep(t) where em(t) and ep(t) are zero-mean Gaussian
noise independently sampled for each time point. For simplicity we
assume the noise variance of ep(t) is a constant σ2

p and infer it as
a parameter of the model. We estimate the mRNA noise variances
σ2
m(t) for each time point t as sums of a shared constant σ2

m and a
fixed variance inferred by BitSeq by combining the technical quan-
tification uncertainty from BitSeq expression estimation with an es-
timate of biological variance from the BitSeq differential expression
model (full details are in Sec. RNA-seq data processing).

Since the noise is zero-mean, the GP prior for the noisy observa-
tions has the same means as the noiseless means, that is, E[m̃(t)] =
E[m(t)] and E[p̃(t)] = E[p(t)]. Since the noise is independently
added to each observation, the covariance function of observed pol-II
becomes

kp̃(t, t
′) = kp(t, t

′) + δ(t, t′)σ2
p [S18]

where δ(t, t′) = 1 if t = t′ and zero otherwise, the covariance func-
tion of observed mRNA becomes

km̃(t, t′) = km(t, t′) + δ(t, t′)σ2
m(t) , [S19]

and the cross-covariance function between observed pol-II and
mRNA is the same as the noiseless version so that

km̃p̃(t, t
′) = kmp(t, t

′) . [S20]
The GP prior over time series functions and the observation

model together define a full probability model for the pol-II and
mRNA data. As the observations are noisy and available only at a
small set of time points, we will apply Bayesian inference to infer
the underlying time series m(t) and p(t) from the observations.

Covariance matrix for GP inference. Given a set of time points, here
the 10 time points

Tobs = t0 + (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280)

= (t1, . . . , tN )

where t0 is the initial observation time and the numbers denote time
in minutes, and the corresponding observation data consisting of
N = 10 pol-II observations and N = 10 mRNA observations
D = (p̃(t1), . . . , p̃(tN ), m̃(t1), . . . , m̃(tN )), we wish to compute
the posterior distribution of GP hyperparameters, and to predict the
shape of the underlying time series functions p(t) and m(t) given
the posterior. We will especially wish to study delay between pol-II
and mRNA; for mathematical convenience we set t0 = 300 min and
consider mRNA delay parameters 0 ≤ ∆ ≤ 300 min.

For GP inference, given the hyperparameters we must compute
the prior GP covariance matrix for the observations D. We describe
the matrix here in a general form which is needed later for inference
of time series values at previously unseen time points.

The covariance matrix describes covariance between measure-
ments at one set of time points (indexed by rows of the matrix) and
another set of time points (indexed by columns of the matrix). Let
Trow = (trow,1, . . . , trow,Nrow ) be a vector of Nrow time indices
for rows of the matrix, and let Tcol = (tcol,1, . . . , tcol,Ncol) be the
vector of Nrow time indices for columns of the matrix.

The resulting covariance matrix K(Trow, Tcol) has the block
structure

K(Trow, Tcol) =

[
Kp̃ Kp̃m̃

Km̃p̃ Km̃

]
[S21]

where each block is a Nrow × Ncol matrix of covariance func-
tion values between the time points t ∈ Trow and the time points
t′ ∈ Tcol, so that Kp̃ is composed of values kp̃(t, t′), Km̃ is com-
posed of values km̃(t, t′), Km̃p̃ is composed of the cross-covariance
values km̃p̃(t, t′), and Kp̃m̃ is composed of the cross-covariance val-
ues km̃p̃(t′, t). The covariance matrix of observed data is then simply
Kobs = K(Tobs, Tobs).
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Marginal likelihood function. The analytical tractability of the GP
model allows us to marginalise out the latent functions p(t) andm(t)
to compute a marginal likelihood that only depends on the model pa-
rameters. The marginal probability density of the observations D is
Gaussian and the marginal log-likelihood is

logP (D) = (1/2)(−d log(2π) − log(|Kobs|) − u>K−1
obsu)

[S22]

where P denotes the marginal probability density, d = 20 is the total
number of pol-II and mRNA observations and u is the column vector
of observations with their expected values subtracted, u =

[
p̃(t1) −

E[p̃(t1)], . . . , p̃(tN )−E[p̃(tN )], m̃(t1)−E[m̃(t1)], . . . , m̃(tN )−
E[m̃(tN )]

]>.

Posterior prediction. The analytical tractability of the GP model also
allows us to obtain the full posterior distribution over the latent func-
tions in closed form given the parameters. Given the observed data,
we can thus compute the mean and covariance of the underlying time
series function values at each time point, as expectations over the
posterior distribution of the underlying functions. For N∗ new time
points T ∗ = (t∗1, . . . , t

∗
N∗) the posterior mean is

E[[p̃(t∗1), . . . , p̃(t∗N∗), m̃(t∗1), . . . , m̃(t∗N∗)]|D]

= u∗prior +K(T ∗, Tobs)K
−1
obsu [S23]

where

u∗prior =
[
E[p̃(t∗1)], . . . , E[p̃(t∗N∗)],

E[m̃(t∗1)], . . . , E[m̃(t∗N∗)]
]> [S24]

is the vector of prior means computed at the new time points, and the
posterior covariance matrix is

Cov[(p̃(t∗1), . . . , p̃(t∗N∗), m̃(t∗1), . . . , m̃(t∗N∗))|D]

= K(T ∗, T ∗)−K(T ∗, Tobs)K
−1
obsK(T ∗, Tobs)

> . [S25]

The log-likelihood and predictions of function values described
here are computed given fixed values of hyperparameters of the GP
prior and the observation model. We will compute a posterior dis-
tribution for the hyperparameters, given suitable prior distributions
for each. This will allow summarisation of underlying pol-II and
mRNA functions and GP parameters over the posterior distribution
of the hyperparameters. We next describe the prior distributions of
hyperparameters and then describe the sampling based inference of
hyperparameter posterior distributions.

Parameter prior distributions. All parameters except the delay ∆
have approximately uniform bounded logistic-normal priors. These
priors were used because of convenience: they allow easy Hamilto-
nian Monte Carlo sampling that requires very little tuning (see below
for details).

The density of the logistic-normal prior logit-normal(µ, σ2, a, b)
with location parameter µ and scale parameter σ2 for variable θ
bounded to the interval [a, b] is

p(θ|µ, σ2, a, b) =

1√
2πσ2

exp

(
− (logit((θ − a)/(b− a))− µ)2

2σ2

)
· b− a

(θ − a)(b− θ) , [S26]

where logit(x) = log(x/(1− x)). We use µ = 0 and σ = 2 which
lead to an approximately uniform distribution on the interval [a, b].
The interval bounds a, b for all variables are presented in Table S1.

For the delay ∆ we use a prior with µ = −2, σ = 2 to reflect our
prior belief that the delays should in most cases be small. For β and

l we set the priors with respect to β2 and 2/l2 respectively, because
these are more convenient as model parameters.

Table S1: Bounds for bounded logistic-normal priors of differential
equation parameters in the GP inference of pol-II and mRNA time
series. Each parameter is bounded to an interval [a, b], we list the
values of the lower bound a and upper bound b. Here σ̂2

Pol2 is the
empirical variance of the pol-II time series after preprocessing.

Parameter Lower bound a Upper bound b
2/l2 (1280 min)−2 (5 min)−2

≈ 6.1 · 10−7 min−2 = 4 · 10−2 min−2

Cp 2 · 10−4 σ̂2
Pol2 σ̂2

Pol2

σ2
p 0.05σ̂2

Pol2 σ̂2
Pol2

α 1 · 10−6 min−1 log(2) min−1 ≈ 0.69 min−1

β2 1 · 10−6 min−2 1 min−2

∆ 0 min 299 min
β0 0 min−1 1 min−1

m0 0 2
µp 0 1

Parameter inference by Hamiltonian Monte Carlo sampling. Given
the data and the priors for the parameters, we apply fully Bayesian
inference with Hamiltonian Monte Carlo (HMC) sampling (8) to ob-
tain samples from the posterior distribution of the parameters. HMC
is a MCMC algorithm that uses gradients of the target distribution
to simulate a Hamiltonian dynamical system with an energy function
based on the target distribution. This allows taking long steps while
maintaining a high acceptance rate in the sampling.

In order to apply HMC more easily, we transform all parame-
ters to an unbounded space using the logistic transformation. The
logistic-normal priors correspond to normal priors on the transformed
variables, which effectively prevent the sampler from wandering off
to the saturated region of the transformation near the bounds of the
intervals.

We run 4 parallel chains starting from different random initial
states to allow convergence checking. We use the HMC implemen-
tation from NETLAB toolkit in Matlab with momentum persistence
and number of leap frog steps τ = 20 which were found to work well
in all cases. The step length ε is tuned separately for every model
(see below). After tuning, each chain is run for 10000 iterations. The
samples are then thinned by a factor of 10, and the first half of the
samples are discarded, leaving 500 samples from each chain, 2000
in all. Convergence is monitored using the potential scale reduction
factor

√
R̂ (9).

√
R̂ is computed separately for each variable, and if

any of them is greater than 1.2, the result is discarded and a new sam-
ple obtained in a similar manner. The 9 genes that did not converge
after 10 iterations of this process were removed from further analysis.
In most cases these had severely multimodal delay distributions that
were difficult to sample from and would have made further analysis
difficult.

Tuning

The applied logistic transformation and priors together allow us-
ing the same global step length ε for all variables, or using the
identity matrix as the mass matrix in the HMC formulation. The
step length ε was determined by trying different alternatives in
the set {10−5, 10−4, 10−3, 0.003, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1,
0.3, 0.5, 1} in increasing order, running the sampler for 100 steps and
using the largest value with at least 80% acceptance rate. This target
rate is higher than usual in random walk MCMC because HMC ac-
ceptance rate should be nearly 100% even with very long steps if the
Hamiltonian system is simulated accurately.
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Summarisation of inference results

The inference results are summarised using the median of the poste-
rior samples. This is a convenient statistic because it is invariant to
transformations of the parameter space, such as those used during the
sampling.

Validation of the GP modelling results. In order to validate the GP
model, we implemented inference for the same ODE using a smooth-
ing spline fit for pol-II. A comparison of the results for the subset of
genes that yielded reliable results with the spline approach is pre-
sented in Fig. S10.

Filtering of results
Reliable posterior samples were obtained for models of 4373 genes.
4304 of these had multiple-exon transcripts, and could thus be used
for intron analyses. These genes were further filtered to remove bad
fits by only keeping genes that satisfy the following:

1. The global maximum tmax of p(t) posterior mean p̄(t) in the
interval t ∈ [0 min, 1280 min] occurs in the interval tmax ∈
(1 min, 160 min). This condition ensures the profile has a peak
in the densely sampled region which is necessary for accurate es-
timation of the delay.

2. The posterior median delay ∆̂ < 120 min. Because of the in-
creasingly sparse sampling, longer delay estimates were consid-
ered unreliable. The specific cut-off was determined by visual
inspection of the fits to rule out implausible ones.

3. The posterior mean p̄(t) of p(t) does not change too much just be-
fore t = 0 min. This condition is necessary to avoid cases where a
long delay pushes distinctive features of m(t) to p(t), t < 0 min,
which conflicts with the assumption that the system is at a steady
state until t = 0 min. Quantitatively, we define an index

D = D− −D+ = D[−30 min,0 min] −D[0 min,10 min] [S27]

where

DI =

(
max
t∈I

[p̄(t)]−min
t∈I

[p̄(t)]

)
/ max
t∈[−30 min,1280 min]

[p̄(t)],

[S28]
and only include genes with

D < 0.05. [S29]

Intuitively, DI looks at the magnitude of change in p̄(t) in the
interval I relative to the global magnitude of change in p̄(t).
The final statistic D looks for genes that have small changes in
[−30 min, 0 min], but forgives genes with early large changes
in [0 min, 10 min] because these would often spill over to t <
0 min because of the properties of the GP model. The cut-off
0.05 represents 5% change in magnitude, which seems reasonably
small. The main conclusions of the work are robust to different
cutoffs, as demonstrated in Fig. S5 below.

After these filtering steps, there were 1814 genes left for the analysis.
Main results under an additional filter of setting a maximum for

posterior inter-quartile range are presented in Fig. S11.

Synthetic data generation
The synthetic data were generated by fitting a GP with the MLP
covariance (10) to the Pol-II measurements of the gene TIPARP
(ENSG00000163659), and numerically solving the mRNA level us-
ing Eq. [S3] with the GP posterior mean as p(t). The parame-
ters used were: ∆ ∈ {0, 10, 20, 30} min, t1/2 = log(2)/α ∈
{2, 4, 8, 16, 32, 64} min, β0 = 0.005, β = 0.03, m0 = 0.008/α.
The parameter values were chosen empirically to get profiles that ap-
proximately fitted the actual mRNA observations while looking rea-
sonable and informative across the entire range of parameter values.

Estimation performance for mRNA half life
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Fig. S1: Boxplots of parameter posterior distributions illustrating pa-
rameter estimation performance on synthetic data for the mRNA half
life t1/2 = log(2)/α. The strong black lines indicate the ground
truth used in data generation. The box extends from 25th to 75th per-
centile of the posterior distribution while the whiskers extend from
9th to 91st percentile. The model often underestimates the half lives,
especially in the presence of a significant delay.

Supplementary Results
In this section we provide supplementary Figs. S1–S8 discussed in
the main paper as well as Figs. S9–S11 discussed in the Supplemen-
tary Methods.
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Estimation of delays under changing mRNA half life
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Fig. S2: Boxplots of parameter posterior distributions illustrating parameter estimation performance on synthetic data for the delay parameter
∆. The strong black lines indicate the ground truth used in data generation. The box extends from 25th to 75th percentile of the posterior
distribution while the whiskers extend from 9th to 91st percentile. This is a counterpart of Fig. 3 in a situation where the simulated mRNA
half-life t1/2 changes during the time course, something our model cannot capture. The simulated changes are point changes up or down
with a factor of 1.5 or 2 at 80 min. The results show that delay estimates remain accurate and reliable, with the true value always in the high
posterior density region, and demonstrate the conservativeness of the estimates with no sign of serious overestimation of small delays.
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Extended study of tail probabilities of delays
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Fig. S4: Alternative versions of Fig. 5 of the main paper: tail prob-
abilities for delays for different cut-offs for D in Eq. [S29]. Top:
D < 0.05 (value used for main results), middle: D < 0.1, bot-
tom: D < 0.01. Left: genes whose longest pre-mRNA transcript is
short (m is the length from transcription start to end). Right: genes
with relatively long final introns (f is the ratio of the length of the
final intron of the longest annotated transcript of the gene divided by
the length of that transcript pre-mRNA). The fraction of genes with
long delays ∆ is shown by the red and blue lines (left axis). In both
subplots, the black curve denotes the p-values of Fisher’s exact test
conducted separately at each point (right axis) with the dashed line
denoting p < 0.05 significance threshold. The general shapes of the
curves are the same in every case.
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Fig. S5: Alternative versions of Fig. 5 of the main paper: different
cut-offs for f and m. Left: genes whose longest pre-mRNA tran-
script is short (m is the length from transcription start to end). Right:
genes with relatively long final introns (f is the ratio of the length of
the final intron of the longest annotated transcript of the gene divided
by the length of that transcript pre-mRNA). The fraction of genes
with long delays ∆ is shown by the red and blue lines (left axis). In
both subplots, the black curve denotes the p-values of Fisher’s exact
test conducted separately at each point (right axis) with the dashed
line denoting p < 0.05 significance threshold. The general shapes of
the curves are the same in every case.

8



All genes
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Fig. S6: Alternative versions of Fig. 5 (right) of the main paper: explore the dependence on f for genes with a lower bound on mRNA length
m. The fraction of genes with long delays ∆ is shown by the red and blue lines (left axis). The black curve denotes the p-values of Fisher’s
exact test conducted separately at each point (right axis) with the dashed line denoting p < 0.05 significance threshold. The general shapes of
the curves are the same in every case.

Study of exon skipping and delay
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Fig. S7: Proportion of long posterior median delays for genes
with/without annotated exon skipping. The fraction of genes with
long delays ∆ is shown by the red (no skipped exons) and blue
(skipped exons) lines (left axis). The black curve denotes the p-values
of Fisher’s exact test conducted separately at each point (right axis)
with the dashed line denoting p < 0.05 significance threshold. There
is no clear difference between the two groups.

Table S2: Fraction of reads mapping to mRNA transcripts alone
(junction reads), pre-mRNA transcripts alone and both across all time
points.

t mRNA pre-mRNA both
0 min 0.035 0.287 0.678
5 min 0.033 0.308 0.659

10 min 0.036 0.270 0.694
20 min 0.033 0.321 0.647
40 min 0.033 0.312 0.654
80 min 0.031 0.372 0.597

160 min 0.033 0.331 0.636
320 min 0.033 0.327 0.640
640 min 0.034 0.330 0.636

1280 min 0.032 0.339 0.629

Table S3: Fraction of reads assigned by BitSeq on average to mRNA
transcripts and pre-mRNA transcripts, as well as fraction predicted
for pre-mRNA when distributing ’both’ category reads from Table S2
uniformly according to average transcript lengths. Only multi-exon
genes are considered here, because the division is not meaningful for
others. The results demonstrate that BitSeq can split the RNA-seq
data to mRNA and pre-mRNA fractions in a meaningful manner.

t mRNA pre-mRNA pre-mRNA pred.
0 min 0.62 0.38 0.37
5 min 0.59 0.41 0.39

10 min 0.64 0.36 0.36
20 min 0.58 0.42 0.40
40 min 0.59 0.41 0.40
80 min 0.53 0.47 0.45

160 min 0.57 0.43 0.41
320 min 0.57 0.43 0.41
640 min 0.57 0.43 0.41

1280 min 0.55 0.45 0.42
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Accumulation of pol-II in long and short delay genes
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Fig. S8: Alternative version of Fig. 6 (right) of the main paper: com-
puting the index based on pol-II ChIP-seq and GRO-seq instead of
intronic RNA-seq reads. The top plots show differences in the mean
pol-II accumulation index in long delay genes (blue) and short delay
genes (red) as a function of the cut-off used to distinguish the two
groups (left axis). Positive values indicate increased pol-II accumu-
lation at the 3’ end (top left: last 50% of the gene body, top right: last
5% of the gene body) over time. The black line shows the p-values
of Wilcoxon’s rank sum test between the two groups at each cut-off
(right axis). The bottom plot is the same as top right, except for GRO-
seq data of (11), with the index is defined as the difference between
the only late (160 min) time point and the average of the early (0-40
min) time points. In contrast to the pre-mRNA figure in the main pa-
per, both long and short delay genes show a clear tendency towards
accumulation of pol-II towards the end of the gene, but there is no
clear difference between the two groups for the last 50% (top left),
while there is a very consistent pattern of more pol-II accumulation
very close to 3’ end (top right) for long delay genes, and the level is
essentially independent of the estimated delay. GRO-seq data in the
last 5% (bottom) behave similarly as pol-II ChIP-seq (top right).
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Fig. S9: Distributions of per-gene mRNA and pre-mRNA counts
and coverages based on BitSeq expression estimates. Top two rows
show broad distributions for all genes, while the bottom two rows
show distributions biased toward higher values for the selected 1786
genes. The results show that the mRNA coverages are mostly clearly
higher than for pre-mRNA, again demonstrating a sensible split be-
tween pre-mRNA and mRNA.
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Comparison with an alternative delay estimation method
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Fig. S10: Comparison of estimated posterior median delays from
the GP model with an alternative spline-based model for n = 15
genes with reliable estimates. In this model we used cubic smooth-
ing splines to fit continuous curves to pol-II measurements. To ac-
count for the uneven sampling the times were transformed as t′ =
log(t/min+5). The regularisation strength was shared over all genes
and optimised by leave-one-out cross validation over all internal time
points. The time transformation was also found to work much bet-
ter than untransformed time in the cross validation. The smoothed
pol-II curves were used as input to Eq. [S2] which was solved nu-
merically to obtain predictions for m(t). Assigning a Gaussian noise
model to m(t) similar to the GP model and using similar priors for
all shared parameters, we run MCMC to obtain posteriors over the
parameters. We were only able to obtain reliable parameter estimates
for a small subset of genes for which the method had a good fit (mea-
sured through expected relative residual variance) for both pol-II and
mRNA. The other estimates were unreliable presumably because the
method estimated the pol-II profiles independently but then ignored
the uncertainty related to this estimation, which further highlights the
benefits of the GP approach.
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Additional filtering of genes with broad delay posteriors
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Fig. S11: Alternative versions of Figs. 5 and 6 under more stringent filtering of delay posterior interquartile range (IQR).
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