SUPPLEMENTAL MATERIALS

Minimal Peptidoglycan Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of *Streptococcus pneumoniae* D39 Growing Planktonically and In Host-Relevant Biofilms

Michael J. Boersma¹, Erkin Kuru², Jonathan T. Rittichier², Michael S. VanNieuwenhze², Yves V. Brun¹, and Malcolm E. Winkler^{*1}

Departments of Biology¹ and Chemistry², Indiana University Bloomington, Bloomington,

IN 47405

TABLE S1. Bacterial strains used in this study

TABLE S2. Oligonucleotide primers used in this study (order follows Table S1)

SUPPLEMENTAL FIGURE LEGENDS

REFERENCES FOR SUPPLEMENTAL MATERIALS

*Corresponding author: Malcolm E. Winkler Department of Biology Indiana University Bloomington 1001 East Third Street - Jordan Hall 142 Bloomington, Indiana 47405 Phone: 812-856-1318 E-mail: <u>winklerm@indiana.edu</u>

Strain	Genotype (description) ^b	Antibiotic	Reference or
number		Resistance ^c	source
EL59	R6	None	(1)
IU1690	D39	None	(1)
IU1824	D39 $\Delta cps rpsL1$	Str ^R	(1)
IU1868	TIGR4	None	(2)
IU1945	D39 Δcps	None	(1)
IU2336	D39 Δcps kan-t1t2-P _c -pcsB ⁺	Kan ^R	(3)
IU3766	D39 Δ <i>lytA</i> <>P _c -aad9	Spec ^R	(4)
IU3875	D39 $\Delta cps \Delta pmp23 <> P_c$ -kan	Kan ^R	(4)
IU3877	D39 $\Delta cps \Delta lytB <> P_c - kan - rpsL^+$	Kan ^R	(4)
IU3880	D39 $\Delta cps \Delta dacB <> P_c - kan - rpsL^+$	Kan ^R	(4)
IU3881	D39 ∆cps ∆spd_0703<>kan	Kan ^R	(4)
IU3900	D39 $\Delta cps \Delta lytA <> P_c$ -aad9	Spec ^R	(4)
IU5648	$\Delta cps rpsL1 divIVA^+-P_c-kan-rpsL^+$	Kan ^R	HC. Tsui
			(unpublished)
IU5661	D39 Δcps rps/1 $\Delta div/VA$ (IU5648 transformed	Str ^R	This study
	with markerless $\Delta divIVA$ amplicon)		
IU6647	D39 $\Delta cps \Delta pbp1a$::P _c -erm (IU1945	Erm ^R	This study
	transformed with $\Delta pbp1a$::P _c -erm amplicon)		
IU7204	D39 $\Delta cps \Delta dacA:: P_c-kan-rpsL^+$ (IU1945	Kan ^ĸ	This study
	transformed with $\Delta dacA$:: P_c -kan-rpsL ⁺		
	amplicon)	В	
IU9086	$\Delta cps rpsL1 \Delta mapZ::P_c-kan-rpsL^+ (IU1824)$	Kan [∽]	A. Perez
	transformed with $\Delta mapZ::P_c-kan-rpsL^{+}$		(unpublished)
	amplicon)	P P	
109175	D39 $\Delta cps rpsL1 \Delta mapZ$ (IU9086 transformed	Str'	This study
	with markerless $\Delta map \angle$ amplicon)	R	
109709	D39 $\Delta cps \Delta murMN::P_c-erm$ (IU1945	Erm'`	This study
	transformed with $\Delta murMN::P_c-erm$ amplicon)	R R	
K270	D39 $\Delta cps \Delta pgdA::P_c-kan-rpsL'$ (IU1945	Kan'`	This study
	transformed with $\Delta pgdA::P_c$ -kan-rpsL'		
		I K c R	This at 1
K447	$D_{39} \Delta cps \Delta a dr.: P_c - kan - rpsL^{\circ} (IU1945)$	Kan	i his study
	transformed with $\Delta a dr:: P_c - kan - rpsL' amplicon)$		

TABLE S1. Streptococcus pneumoniae strains used in this study^a

^aStrains were constructed and characterized as described in Materials and Methods.

^bPrimers used to synthesize fusion amplicons are listed in Table S2.

^cAntibiotic resistance markers: Erm^R, erythromycin; Kan^R, kanamycin; Spec^R, spectinomycin; Str^R, streptomycin.

Primer	Sequence (5' to 3')	Template ^a	Amplicon		
	Eor construction of IU5661 (Acps Adiv)	ν <u>α</u>	FIUUUCI		
LIIR-015		D39	5' upstream		
SC238	TAACCGTCCAGTTATTATTAAGTAAGTGATAGC	200	fragment		
00200	TCCAGTGCATCCGACAGGTCCAAC				
SC237	CCGTCCAGTTATTATTAAGTAAGTGATAGCTCC	D39	3'		
	AGTGCACCGACAGGTCCAACACCAG		downstream		
LIIF-013	CACGTTGGACATGCTATGAACAAGATT		fragment		
	For construction of IU6647 (Δ <i>cps</i> Δ <i>pbp1a</i> ::I	Pc <i>-erm</i>)			
P234	CCCTTGTGTTCATAGCGAGGATAAGCA	D39	5' upstream		
P236	CATTATCCATTAAAAATCAAACGGATCCTACAAGC		fragment with		
	TTAAGAAGCTAATGCTCAGATACTT		60nt of 5'		
			pbp1a		
Erm	ATGAACAAAAATATAAAATATTCTCAAAACTTT	P _c -erm	P _c -erm		
Forward		cassette	cassette		
Erm	TTATTTCCTCCCGTTAAATAATAGATAACTAT				
reverse		.			
P237		D39	60 nt of 3		
Beer		-	pbp1a and 3'		
P235	AGGCAAGCCIGCAACCAIGGICIIGAAA		downstream		
	Ear construction of UL7204 (A one A doc A::P. A	$(2n rncl^{+})$	nagment		
P150			5' unstream		
P152		039	fragment with		
1 152			60nt of 5'		
			dacA		
Kan rosL	TAGGATCCGTTTGATTTTTAATGGATAATG	Pc- <i>kan</i> -	Pc-kan-rpsL ⁺		
forward		rpsL ⁺	cassette		
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette ^b			
reverse					
P153	CAAAAGCATAAGGAAAGGGGCCCTTCTTCTTAAAA	D39	60 nt of 3'		
	GTTTGGTGGAATCAGTTTG		dacA and 3'		
P151	TATCGTTGATGAGGGAGCAAGCGTCCACTA		downstream		
			fragment		
For construction of IU9175 (Δ <i>cp</i> s Δ <i>mapZ</i>)					
P1523	GAGGTCTCTATTCTCAAAGATGTGGCAACTGTC	D39	5' upstream		
AJP92	CCGACAAAGTAGCCTGTCTTACAATCAAATTGCGG		fragment		
	TTCTTGAGCTTCT				
AJP93	GCTCAAGAACCGCAATTTGATTGTAAGACAGGCTA	D39	3'		
	CTTTGTCGGAAATGGC	4	downstream		
P1526	AATTGCATATCACCGTACTCAATACCATTGTG		fragment		

TABLE S2. Oligonucleotide primers used in this study (order follows Table S1)

For construction of IU9709 (Δ <i>cps</i> Δ <i>murMN</i> ::P-erm)					
P1535	GGGTGAATGTCCTCTACCCTGATGCCAATC	D39	5' upstream		
P1536	ACATTATCCATTAAAAATCAAACGGATCCTAGGCT		fragment with		
	AATTCATGT TCTTTGACAAACTGAT		60nt of 5'		
			murMN		
Erm	ATGAACAAAAATATAAAATATTCTCAAAACTTT	P-erm	P-erm		
Forward		cassette ^b	cassette		
Erm	TTATTTCCTCCCGTTAAATAATAGATAACTAT				
reverse					
P1537	CAAAAGCATAAGGAAAGGGGCCCCATCCATCTCC	D39	60 nt of 3'		
	TTTAAAATACAAAGCTATCC		murMN and 3'		
			downstream		
P1538	GCCTCTGTCTTGGTATCATGACTTCCACGAA		fragment		
	For construction of K270 (Δ <i>cps</i> Δ <i>pgdA</i> ::P _c - <i>ka</i>	an-rpsL⁺)	I		
P632	TGAAATGATGGCTGATAGCGCCAGTTCCGA	D39	5' upstream		
P634	CATTATCCATTAAAAAATCAAACGGATCCTATTTCCC		fragment with		
	GTGTCTGCCACGTCC		60nt of 5'		
			pgdA		
Kan rpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	Pc- <i>kan</i> -	Pc- <i>kan-rpsL</i> ⁺		
forward		rpsL⁺	cassette		
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette			
reverse					
P635	CAAAAGCATAAGGAAAGGGGCCCAGATGCTCAAT	D39	60 nt of 3'		
	ACTCGCCTAAAAGCTC		pgdA and 3'		
		-	downstream		
P633	AACTCGTGGAGCACCCGATTGAACAGCAAT		fragment		
	For construction of K447 (Δ <i>cps</i> Δ <i>adr</i> ::P _c - <i>ka</i>	n-rpsL⁺)			
P981	TCACCGTCGTCCACATGACCAAGGTTTGTT	D39	5' upstream		
P983	CATTATCCATTAAAAATCAAACGGATCCTAATACAA		fragment with		
	GAGTACCAAAAGTAAACCTATA		60nt of 5'		
			adr		
Kan rpsL	TAGGATCCGTTTGATTTTTAATGGATAATG	Pc- <i>kan</i> -	Pc- <i>kan-rpsL</i> ⁺		
forward		rpsL ⁺	cassette		
Kan rpsL	GGGCCCCTTTCCTTATGCTTTTG	cassette			
reverse					
P984	CAAAAGCATAAGGAAAGGGGCCCGCAGATACGAT	D39	60 nt of 3'		
	TGCCACAGCTTTG		adr and 3'		
P982	ACCTGTCGATTTGAGGCGTGCAGTTCCATT		downstream		
			fragment		

^aGenomic DNA of the indicated *S. pneumoniae* strains was used as templates for PCR reactions, except for P_c -*erm* and P_c -*kan*-*rpsL*⁺ cassettes.

^bPc-*erm* and Pc-*kan-rpsL*⁺ cassettes are described in (5).

SUPPLEMENTAL FIGURE LEGENDS

FIG S1. Unlabeled cell poles of *S. pneumoniae* do not acquire new labeling. Cells of parent strain IU1945 (D39 Δcps) were grown exponentially in BHI broth, labeled with HADA (pseudocolored green) for 30 min (A) or 105 min (B), washed, and chased in the presence of TADA (pseudocolored red) for 5 min as described in Materials and Methods. Live cells were imaged by epi-fluorescence phase-contrast microscopy, and arrows in (A) indicate blank hemispheres ("flattops") that were not labeled by HADA in 30 min and that are bordered by a red TADA band of new PG synthesis. Minimal variation in labeling patterns was observed for >300 individual cells in diplococci or short chains examined in microscopic fields, and representative images are shown. Scale bar = 1 μ m. Fluorescence overlays of HADA and TADA labeling and phase overlays of HADA, TADA, and phase-contrast images are shown.

FIG S2. Similar unlabeled PG peptide profiles in parent strain IU1945 (D39 Δcps) (A) and isogenic mutant IU7204 (D39 $\Delta dacA$) (B), which lacks the D,D-carboxypeptidase that converts PG pentapeptides to PG tetrapeptides. Bacteria were grown in BHI broth without labeling (red lines) or with HADA labeling (blue lines), and PG was purified and PG peptides released with purified LytA amidase as described in Materials and Methods. HPLC was used to resolve PG peptides using the gradient conditions described in (6) with UV absorbance detection at 210 nm (A₂₁₀). Different chromatograms are offset on the same x-time axis for comparisons of unlabeled and labeled samples. Arrows indicate peaks of HADA-labeled PG peptides not present in unlabeled samples. The experiment was performed independently twice with similar

5

results. Note that the HPLC gradient here was different from that used in Figure 4 (see Materials and Methods; (4)). See text for additional details.

FIG. S3. Persistence of hemispheres of stable old PG indicative of minimal turnover in cells of *S. pneumoniae* TIGR4 and D39 encapsulated strains visualized by longpulse/chase/new-labeling with FDAA probes. IU1686 (TIGR4) and IU1690 (D39) (see Table S1) were grown exponentially in BHI broth, labeled with HADA (pseudocolored green; old PG), washed, and chased in the presence of either NADA or TADA (pseudocolored red; newly synthesized PG) as described for Figure 2 and in Materials and Methods. Images are representative of >200 individual cells in diplococci or chains of each strain examined in microscopic fields at different time points after the start of the chase/second FDAA labeling in two biological replicates. Scale bar = 1 μ m. P, phase contrast image; H, HADA labeling (old PG); T, TADA or N, NADA labeling (new PG synthesis); O, overlay of H and T or N images. Note that encapsulated strain D39 forms short chains of cells compared to unencapsulated mutants (Fig. 2) as we reported previously (3).

FIG. S4. Persistence of hemispheres of stable old PG indicative of minimal turnover in wild-type (parent) bacteria growing in chemically defined medium (CDM) containing glucose or galactose as carbon source. Strain IU1945 (D39 Δcps) was grown exponentially in CDM medium with the indicated carbon sources, labeled with HADA (pseudocolored green; old PG), washed, and chased in the presence of NADA (pseudocolored red; newly synthesized PG) as described for Figure 2 and in Materials and Methods. Images are representative of >124 individual cells in diplococci or short chains for each growth condition examined in microscope fields at different time points

6

after the start of the chase/NADA labeling in two biological replicates. Scale bar = 1 μm. P, phase contrast image; H, HADA labeling (old PG); N, NADA labeling (new PG synthesis); O, overlay of H and images.

Fig. S5. Persistence of hemispheres of stable old PG indicative of minimal turnover turnover in laboratory strain R6 or a D39 $\Delta cps \Delta murMN$ mutant with reduced or no PG cross-bridges, respectively, compared to the D39 Δcps parent strain. Cells of EL59 (R6) and IU9709 (D39 $\Delta cps \Delta murMN$) (see Table S1) were grown exponentially in BHI broth, labeled with HADA (pseudocolored green; old PG), washed, and chased in the presence of TADA (pseudocolored red; newly synthesized PG) as described for Figure 2 and in Materials and Methods. Images are representative of >200 individual cells in diplococci or short chains of each strain examined in microscopic fields at different time points after the start of the chase/NADA labeling in two biological replicates. Scale bar = 1 μ m. P, phase contrast image; H, HADA labeling (old PG); T, TADA labeling (new PG synthesis); O, overlay of H and T images. Note that IU9709 and IU1945 (Fig. 2) are isogenic (see Table S1).

Fig. S6. Full time courses of long-pulse/chase/new-labeling experiments of the $\Delta pbp1a$ and PG hydrolase mutants shown in Figure 8. Strains and labeling are described in the legend to Figure 8, which shows only two time-points for each strain. Old PG labeled with HADA is pseudocolored green, whereas regions of new PG synthesis are pseudocolored red. At least two biological replicates were done for each strain. The number of individual cells examined for each strain is indicated. Scale bar = 1 µm. P, phase contrast image; H, HADA labeling (old PG); N, NADA labeling (new PG synthesis); O, overlay H and N images.

7

REFERENCES

- Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. 2007. Genome sequence of Avery's virulent serotype 2 strain D39 of *Streptococcus pneumoniae* and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38-51.
- Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM. 2001. Complete genome sequence of a virulent isolate of *Streptococcus* pneumoniae. Science 293:498-506.
- Barendt SM, Land AD, Sham LT, Ng WL, Tsui HC, Arnold RJ, Winkler ME. 2009.
 Influences of capsule on cell shape and chain formation of wild-type and *pcsB* mutants of serotype 2 *Streptococcus pneumoniae*. J Bacteriol **191**:3024-3040.
- Barendt SM, Sham LT, Winkler ME. 2011. Characterization of mutants deficient in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of *Streptococcus pneumoniae* serotype 2 strain D39. J Bacteriol **193**:2290-2300.
- 5. Tsui HC, Keen SK, Sham LT, Wayne KJ, Winkler ME. 2011. Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA

surface chaperone/protease during *Streptococcus pneumoniae* D39 cell Division. mBio **2**:pii: e00202-00211.

 Garcia-Bustos J, Tomasz A. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Nat Acad Sci USA 87:5415-5419.

105 min HADA then 5 min TADA

n=300

Fig. S2

Fig. S3

Fig. S5

n=211

Fig. S6 (continued on next pages)

Fig. S6 (continued on next pages)

Fig. S6 (continued)