

Suppl. Figure 1: The image shows plots interface RMSD against scores for complexes predicted by HADDOCK for the B27 dimer and KIR3DL2. The interface RMSD calculations are taken against a structure generated by alignment of B27 dimer and KIR3DL2 to the structure in PDB 3vh8. The best scoring cluster (Cluster 3) from HADDOCK contains structures with less than 2.5 Å interface RMSD with the structure generated via structural alignment.

Suppl. Fig. 2A. Representative FACS stain of HLA-class I transfected LCL.721.221 cells before (-) and after (+) acid treatment with the class I antibody W632 and class I heavy chain antibodies HC10 and HCA2. **B** Representative FACS stains of EBV-transformed B cell lines from B27+ and B27-donors before (-) and after (-) acid treatment stained with W632 and HC10 antibodies. Representative stains from 1 of 3 independent experiments. **C** Representative FACS stain of CFSE-labelled parental or transfected LCL.721.221 cells with Dead Stain after 6 hour incubation with or without KIR3DL2+NK cells. Representative stains from 1 of 3 independent experiments.

Table I. Predicted contact residues between HLA-B27 free heavy chain dimersand KIR3DL2. Residues in bold form potential H-bonds.

B27	HLA-B27	KIR3DL2	HLA-B27	HLA-B27	KIR3DL2	KIR3DL2
Chain	Residue	Residue	interface	Hot Spot	Interface	Hotspot
	Number	Number		•		-
А	GLN54	ARG73	180	123	180	53
A	GLN54	ARG73	180	123	180	53
A	GLN54	PRO91	180	123	180	0
A	ARG62	GLU141	180	84	180	58
А	ARG62	ASP142	180	84	180	0
Α	ARG62	PR0143	180	84	180	0
Α	ARG62	SER144	180	84	180	95
Α	ARG108	PHE129	180	175	171	1
Α	ARG108	GLU130	180	175	180	111
А	ARG108	VAL147	180	175	180	180
Α	ARG108	GLY148	180	175	180	0
А	ARG108	VAL147	180	175	180	123
А	GLU163	LEU146	180	0	180	180
А	GLU166	VAL147	180	180	180	180
Α	ARG169	GLU130	180	127	180	111
Α	ARG169	HIS131	180	127	180	41
А	ARG169	VAL147	180	127	180	180
Α	ARG170	ARG145	180	1	180	180
AB	GLU177	ARG44	180	32	180	9
Α	THR178	ASP43	180	32	180	48
А	GLN180	ARG44	180	0	180	9
А	LYS186	MET2	180	0	180	1
А	LYS186	GLY3	180	0	179	0
A	LYS268	LEU82	180	0	180	17
Α	LYS 268	LEU82	180	0	180	17
A	LYS268	THR83	180	0	180	0
B	GLY16	PHE9	180	0	180	6
B	GLY16	HIS29	180	0	180	0
В	GLY16	PHE34	180	0	180	0
В	ARG17	PHE9	1/8	0	180	6
B	GLY18 GLN72	PHE9	180	0	180	6
В	GLN/Z	MET165	1//	0	180	0
B		VAL167	180	0	180	50
D D	ΙΠΚΟΟ ΤΠΡΟΛ	ILE139 VAI 167	100	0	100	101
D R		VAL10/	100 190	n	100 190	50 A
R	ARC83	ILF120	180	0	180	101
R	SERSS	ARC13	180	n n	180	0
B	SER88	GLN27	180	0	158	0
B	GLU89	ARG13	180	0	180	0
B	ALA90	ARG13	180	2	180	Ő
B	ARG145	SER228	180	42	180	1
B	ARG145	ASP230	180	42	180	0
В	LYS146	PHE276	180	33	180	174
В	ALA149	SER227	180	177	180	2
В	ALA150	LEU199	180	0	180	0
В	ALA150	TYR200	180	0	180	169
В	ALA150	GLU201	180	0	180	0
В	ARG151	GLU201	180	0	180	0

The number of interface and hot spots indicates the number of times the residue was predicted in 180 snapshots from the tail end of the molecular dynamics simulation.

Suppl Figure 3. Predicted conformational changes in KIR3DL2 upon binding to B27 FHC dimer. A. Molecular model of the D1 domain of KIR3DL2 bound to B27 FHC dimer (purple) overlaid on unbound KIR3DL2 (light blue). The positions of key residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations in the bound and unbound molecules are also indicated in black and blue respectively. **B.** Molecular model of the D0 domain of KIR3DL2 bound to B27 FHC dimer (red) overlaid on unbound KIR3DL2 (white). The positions of key residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations in the bound and unbound molecules are indicated in red and dark blue respectively. C. Molecular model of the D0 domain of KIR3DL2 bound to B27 FHC dimer (red) overlaid on the D0 domain of KIR3DL1 bound to HLAB57 (white). The positions of key residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations to residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations to residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations to residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations to residues in KIR3DL2 for binding to B27 FHC dimer and their relative orientations to residues in