SUPPLEMENTARY FILE

Identification and Characterization of a HEPN-MNT Family Type II Toxin-Antitoxin in *Shewanella oneidensis*

Jianyun Yao^{1,2†}, Yunxue Guo^{1†}, Zhenshun Zeng^{1,2}, Xiaoxiao Liu¹, Fei Shi¹, Xiaoxue Wang^{1*}

¹Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China,

²University of Chinese Academy of Sciences, Beijing 100049, China

[†] These authors contributed equally to this work.

*To whom correspondence should be addressed. Tel: +86 20 89267515; Fax: +86 20 89235490; Email: xxwang@scsio.ac.cn

Keywords: Toxin-antitoxin, MNT, HEPN, *Shewanella oneidensis* **Running head:** a HEPN-MNT Family Type II TA in *S. oneidensis*

Purpose/Name	Sequence (5'-3')
Plasmid construction	
pHEG-SO_3165-f	G <u>GAATTC</u> ATGCAACAACTAAATGAAAATA
pHEG-SO_3165-r	CCC <u>AAGCTT</u> TCAAAGTGACTCCCCCCTATGAG
pHEG-SO_3166-f	G <u>GAATTC</u> ATGACATTATTATCAATAAAATA
pHEG-SO_3166-r	CCC <u>AAGCTT</u> TCACTCTGCTTTTATCACATCAA
pCA24N-SO_3165-f	GCCCAACAACTAAATGAAAATAA
pCA24N-SO_3165-r	CCAAGTGACTCCCCCTATGAGC
pCA24N-SO_3166-f	GCCAATGACATTATTATCAATAA
pCA24N-SO_3166-r	CCCTCTGCTTTTATCACATCAAT
pET28b-SO_3165-f	CTAG <u>CCATGG</u> GCATGCAACAACTAAATGAAAATAA
pET28b-SO_3165-r	CCC <u>AAGCTT</u> CTAGTGGTGGTGGTGGTGGTGGTGAAGTGACTCCCCCCTATGAGCTTTGGC
pET28b-SO_3166-f	CTAG <u>CCATGG</u> GCATGAATGACATTATTATCAATAA
pET28b-SO_3166-r	CCC <u>AAGCTT</u> CTAGTGGTGGTGGTGGTGGTGGTGCTCTGCTTTTATCACATCAATAAATTG
pBS(Kan)-SO_3165-500 up-f	GTCTAG <u>GGTACC</u> AGTACCGCGCGTATATTGAGCG
pBS(Kan)-SO_3166-r	GAGCAC <u>GAGCTC</u> TCACTCTGCTTTTATCACATCA
FAM-SO_3166-r	CGAGAGTGGCTGAGTAATAA
pHGR03-P _{so_3165-3166} -f	CCG <u>GAATTC</u> TGCCTACGAGGCCAGAATTTAAA
pHGR03-P _{so_3165-3166} -r	CGC <u>GGATCC</u> GTAATCATGGTCATAGGTCCATTGCACGATTTGA
PCR and DNA sequencing	
pCA24N-f	GATAACAATTTCACACAGAATT
pCA24N-r	GTCAGAGGTTTTCACCGTCATCA

Table S1. Oligonucleotides used for plasmid construction gene knockout, site-directed mutagenesis (target mutated nucleotides are in red font) and DNA sequencing. Restriction enzyme sites are underlined. f indicates forward primer and r indicates reverse primer.

PHEG-f	CACCTCGCTAACGGATTCACC
PHEG-r	CCAATACGCAAACCGCCTC
pET28b-f	TAATACGACTCACTATAGGG
pET28b-r	TATGCTAGTTATTGCTCAG
pBS(kan)-f	GCCTTTGAGTGAGCTGATACCGCTC
pBS(kan)-r	GTGATGGTTCACGTAGTGGGCCATCG
CRSID-F	GATGTTGAAGTGGCGAGC
CRSID-V	ATGGATGCAAGCAAATGC
PSO_3165-f	TACGAGGCCAGAATTTAAAA
PSO_3165-r	AGGTCCATTGCACGATTTGA
Gene knockout	
delta SO_3166-5-O	GGGGACAAGTTTGTACAAAAAGCAGGCTCGAACGCTCCGCTTACAGATA
delta SO_3166-5-I	GGTCCGGGTTCGCTATCTATTTCAAAGTGACTCCCCCCTATGAG
delta SO_3166-3-O	GGGACCACTTTGTACAAGAAAGCTGGGTTATGCGAGCCATCCTGAATC
delta SO_3166-3-I	ATAGATAGCGAACCCGGACCAGATGTTGACAGAACAAGAAACG
delta SO_3165-3166-5-O	GGGGACAAGTTTGTACAAAAAGCAGGCTCGAACGCTCCGCTTACAGATA
delta SO_3165-3166-5-I	GGTCCGGGTTCGCTATCTATTAGGTCCATTGCACGATTTGATGAATA
delta SO_3165-3166-3-O	GGGACCACTTTGTACAAGAAAGCTGGGTTATGCGAGCCATCCTGAATC
delta SO_3165-3166-3-I	ATAGATAGCGAACCCGGACCAGATGTTGACAGAACAAGAAACG
delta SO_3166-1-f	GACTGGGATAGTAACGGCTCAAA
delta SO_3166-s-f	ATCCGCTATCAAGAATGCGAATC
delta SO_3166-1-r	GCTTTGGTCCGTATGTTGATTGA
delta SO_3166-s-r	ACTTTAGGGCAAGCACAACAGCG
Single amino acid substitution	
SO_3166 R97G-f	GAAAATGGTCGGCCTG <mark>G</mark> GAAACATCGCAGTACA

SO_3166 R97G-r	TGTACTGCGATGTTTCCCAGGCCGACCATTTTC
SO_3166 H102A-f	TTGAGTTCTTGGTAGTCA <mark>GC</mark> TACTGCGATGTTTCGCAGGC
SO_3166 H102A-r	GCCTGCGAAACATCGCAGTAGCTGACTACCAAGAACTCAA
SO_3166 Y104A-f	TATCGAGGTTGAGTTCTTGG <mark>GC</mark> GTCATGTACTGCGATGTTTC
SO_3166 Y104A-r	GAAACATCGCAGTACATGACGCCCAAGAACTCAACCTCGATA

Reference				P (pro)	Score	Coverage	MW	Accession	Peptide (Hits)	
Scan(s)	Peptide	MH+	z	P (pep)	XC	DeltaCn	Sp	RSp	lons	Count
5542	K.TISM*YQHLQAER.Q	1492.72129	2	2.56E-04	3.72	0.46	654.5	1	17/22	2
5745	R.QAIIDDVM*ANTAAK.A	1476.73627	2	2.15E-03	3.19	0.54	507.0	1	20/26	2
8253	K.QLWGTQQDDELFAVK.T	1777.87554	2	4.56E-06	4.73	0.66	1445.2	1	21/28	2

1.55E-10

2.81

6.77

6.72

0.54

0.73

0.68

451.9

1913.4

2843.9

16/36

40/116

43/96

2

2

2

1

1

1

2000.02947 2 2.29E-04

2960.61049 3 2.22E-15

3188.64677 3

Table S2. Mass spectrometry results of the co-purified protein with SO_3166-CHis. Peptide fragments observed were highlighted in different colors, and their loci in SO_3165 protein were also shown.

toxin-antitoxin system antidote Mnt family (SO_3165) [Shewanella oneidensis]

R.NSDIDIAVLAADTLDNIAR.W

K.LASALDSDVDLVDLRSASTV

K.LLRDNIPKLQLIYLFGSYSQG

LCQQVVTQGK.Q

TQHR.N

8447

9743

9932

	1	10	20	30	40	50	60
SO_3165:	MOQLNENKI	IKLLRDNIPK	LQLIYLFGSY	SQGTQHRNSI	IDIAVLAAD	ILDNIARWEL	Ъġ
Identified:		KLLRDNI PK	LQLIYLFGSY	SQGTQHRNSI	DIDIAVLAAD	TLDNIARW	
	61	70	80	90	100	110 117	1
SO_3165:	KLASALDSD	VDLVDLRSAS	TVLCQQVVTQ	GKQLWGTQQL	DELFAVKTI	SMYQHLQAE	
Identified:	KLASALDSD	DLVDLRSAS	TVLCQQVVTQ	GKQ <mark>LWGTQQ</mark> D	DELFAVKT <mark>IS</mark>	<mark>MYQHLQAE</mark>	
	118	128	139				
SO_3165:	ŔQAIIDDVM	<mark>ANTAAKA</mark> HRG	ESĹ				
Identified:	ROAIIDDVM	ANTAAKA					

Figure S1. Gene organization of *SO_3165* and *SO_3166* in *S. oneidensis.* Transcriptional start site C (-30 bp upstream of the start codon of *SO_3165*) for the operon is indicated with an arrow. The sequence encoding *SO_3165* is shown in orange letters and the sequence encoding *SO_3166* is shown in blue letters. The start and stop codons for *SO_3166* and *SO_3165* are highlighted in green and square frames, respectively. The primer used for primer extension experiment is underlined.

Figure S2. Cell morphology examined by phase-contrast microscopy. Morphology of cells overproducing SO_3166 (MR-1/pHGE-SO_3166) vs. cells carrying empty plasmid (MR-1/pHGE) at 0 h and 10 h. Red arrows point to the "swollen" cells. Cells were grown in LB until the OD reached ~0.1. A concentration of 1 mM IPTG was added to overexpress SO_3166 in S. oneidensis. Two independent cultures were used for each strain; only representative images are shown here. Scale bars indicate 10 µm.

Figure S3. SO_3165 in *S. oneidensis* belongs to the MNT substrate-binding superfamily. The secondary structure of SO_3165 was predicted using the online PHYRE2 server (Kelley and Sternberg, 2009). The α -helices and β -sheets are shown. SO_3165 was predicted to have a similar secondary structure with the known secondary structure of nucleotidyltransferase 2 (np_343093.1) from *Sulfolobus solfataricus*. The MNT residues in the two proteins are boxed.

Figure S4. SO_3166 in *S. oneidensis* belongs to the HEPN superfamily. The secondary structure of SO_3166 was predicted using the online PHYRE2 server (Kelley and Sternberg, 2009). The α -helices and β -sheets are shown. The toxin SO_3166 has a similar secondary structure with the known secondary structure of the functional unknown HEPN family protein Yute 2 from *Bacillus Subtilis*. The HEPN residues in the two proteins are boxed, and conserved Rx4-6H motifs in the two proteins are also shown.

Reference:

Kelley, L.A., and Sternberg, M.J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363-371.