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An Information-Based Approach to Change-Point Analysis with
Applications to Biophysics and Cell Biology
Paul A. Wiggins1,*
1Departments of Physics, Bioengineering and Microbiology, University of Washington, Seattle, Washington
ABSTRACT This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological
systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include
molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number varia-
tion by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can
be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic
expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise
model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information cri-
terion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, informa-
tion-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this
information-based approach in the analysis of simulated and experimental tethered-particle-motion data.
INTRODUCTION
The problem of determining the true state of a system that
transitions between discrete states, and whose observables
are corrupted by noise, is a canonical problem in statistics
with a long history (e.g., Little and Jones (1)). The approach
we discuss in this article is called ‘‘change-point analysis’’
and has been applied widely (1–5), including previous appli-
cations to single-molecule biophysics problems (6–10). We
have recently developed an information-based approach
to model selection, one that is new to our knowledge: the
frequentist information criterion (FIC), an approach that
greatly simplifies the analysis (C. H. LaMont and P. A. Wig-
gins, unpublished). This approach reconciles two previously
disparate approaches (information-based versus frequent-
ist), and fixes a series of flaws with previous applications
(C. H. LaMont and P. A. Wiggins, unpublished).

From an information-theoretic perspective, model selec-
tion is performed by minimizing estimated information
loss. FIC provides a single, objective statistical test for
the existence of a change point that greatly simplifies the
statistical analysis of change-point problems. A detailed
development and description of this theory is too long to
include here and is therefore described elsewhere (C. H.
LaMont and P. A. Wiggins, unpublished). The primary
goal of this article is to provide an explicit example of
the application of this information-based approach to
both simulated and experimental data to demonstrate the
power of information-based inference in a biophysical
context.
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The article is organized as follows: we define an explicit
noise model applicable to many biophysical systems and
introduce the information criterion.We then present the appli-
cation of these results to experimental tethered-particle-mo-
tion (TPM) data. The application of change-point analysis
to simulated TPM data is presented in the Supporting Mate-
rial. The development of the theory, the computation of the
FIC approximation of the complexity, and the applications
of change-point analysis to other biophysical systems are dis-
cussed in C. H. LaMont and P. A. Wiggins (unpublished).
MATERIALS AND METHODS

A noise model for biophysical signals

We begin by making three broad assumptions about the character of the

noise in a given state: 1) the probability distribution describing the noise

is approximately Gaussian, 2) the noise is Markovian, and 3) the parameters

describing the noise are stationary (time-independent). The Markovian

property dictates that the probability distribution of the ith measurement de-

pends only on the last measurement (i � 1) and no other proceeding mea-

surements. (Note that we do not expect any of these conditions to be met

exactly in a true experiment. These assumptions can and should be checked

experimentally. We will give examples below of experimental data where

we explicitly demonstrate that these assumptions are weakly and strongly

violated.) When the three criteria listed above are met, the observations

~xi˛RD can be modeled by the discrete stochastic time-evolution equation,

as

~xi ¼ εð~xi�1 �~aÞ þ ð1� εÞ½~mþ~aði� i�Þ� þ k�1=2~xi; (1)

where the stochastic processes are parameterized by the parameter vector

qhðk; ε;~m;~aÞ, and the~xi values are independent D-dimensional, normally

distributed random variables with zero mean and unit variance for each

component of the vector. The parameter k is the stiffness, which
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parameterizes the standard derivation of the noise; ε is the nearest-neighbor

coupling and parameterizes the statistical correlation between the ith and

the (i � 1)th observations; m is the level mean; and a is the level slope in

time. (Of course it is possible to give the level means a more complicated

time dependence than a constant slope, but this form is sufficient to analyze

many problems. Another important generalization is to make k- and ε-ten-

sors. It is straightforward to extend the results for these generalized

models.) Finally, i* is a redundant parameter added for convenience and

is analogous to putting the equation for a line in point-slope form. The

role of these parameters in shaping the noise is illustrated schematically

in Fig. 1. The noise parameters q would be called ‘‘emission parameters’’

in the context of a hidden Markov model (11).

Now we define a model for the signal corresponding to a system transi-

tioning between a set of discrete states. We define the discrete time index

corresponding to the start of the Ith state as iI. The model parameters

describing the noise in the Ith interval are qI. Together these two sets of pa-

rameters (iI and qI) parameterize the modelM. The model parameterization

for the signal (including multiple states) can then be written explicitly as

Q ¼
�

1 i2 . in
q1 q2 . qn

�
; (2)

where n is the number of states. By definition, we set i1 h 1. The depen-

dence of the model on these two sets of parameters (qI and iI) is fundamen-

tally different. The noise model parameters qI are continuous harmonic

parameters. (Note that harmonic parameters have the property that the like-

lihood is well approximated by a Gaussian distribution about the maximum

likelihood estimator (C. H. LaMont and P. A. Wiggins, unpublished)

because they always have nonzero Fisher information (C. H. LaMont and

P. A. Wiggins, unpublished).) By contrast, the change-point indices iI are

discrete and typically nonharmonic parameters. These properties will

have important consequences for model selection (C. H. LaMont and P.

A. Wiggins, unpublished).
The model dimension

A critical consideration for analysis will be the dimension of the model. The

most important dimension will be the dimension of an individual state. At

this point, it is important to make the distinction between two types of model
FIGURE 1 State model schematic. The state model signal is character-

ized by four model parameters that are written as the vector q h (k, ε, m,

a). Above, we schematically illustrate the role of each parameter in shaping

the signal. The parameter k, state 1, parameterizes the standard deviation of

the noise (s ¼ k�1/2). State 2 illustrates the effect of the finite lifetime of

fluctuations in models with autoregression (0 < ε < 1). State 3 illustrates

the role of the level mean m. State 4 illustrates of the role of the level slope

(a). To see this figure in color, go online.
parameters, i.e., local and global. For instance, if we set qIhðkI ; ε0;~mI ;~a0Þ,
we will model a system with global parameter values (global is state-inde-

pendent) of ε and ~a, and local parameter values (local is state-dependent)

of k and~m. In spatial dimension D, the parameters k and ε have dimension

1 because they are scalars,whereas~mI and~a0 both have dimensionD because

they are vectors. In this example, the dimension of the model for an individ-

ual state is d ¼ dim k þ dim~m ¼ 1þ D;where d is identical for all states (if

there is only a single state, there is no distinction between local and global

parameters, i.e., d ¼ dM, as defined below), and therefore does not need a

subscript I. Due to their discrete nature, the change-point indices do not

contribute to the parameter counting for the model dimension. (The failure

of the change-point indices to contribute to the model dimension is not uni-

versally true under all scenarios. For long-lived states with very small

changes in themodel parameters, the change-point index does become effec-

tively continuous, which will therefore contribute to the state dimension

(C. H. LaMont and P. A. Wiggins, unpublished).)
The likelihood and information

The likelihood of modelM, with parameterizationQ given observations X,

is defined to be the probability density of observing X in the model M
parameterized by Q, as

LðQ;MjXÞhQðXjQ;MÞ; (3)

where X is short-hand notation for the ordered list of observations

X ¼ ð~x Þ , Q is the probability density of observations X, and M is
i i¼1:::N

the model parameterized by parameters Q. (We give explicit analytic for-

mulas for Q in the Supporting Material.) It is most convenient to work in

terms of the encoding information, defined as the minus-log likelihood,

hðQ;MjXÞh� log LðQ;MjXÞ; (4)

which can be interpreted as the information required (see C. H. LaMont and

P. A. Wiggins, unpublished, for a more in-depth explanation of this state-
ment), in natural units of information (Nats), to encode the observations

X given a model M parameterized by Q. Model predictivity is measured

most naturally by the Shannon cross entropy for N observations,

HðQ;MÞhEX hðQ;MjXÞ; (5)

where EX is the expectation over observations X taken with respect

to the true probability distribution of the observed stochastic process
(C. H. LaMont and P. A. Wiggins, unpublished).

The information and entropy are understood in this context as follows:

the information is understood as the number of characters (information)

required to encode a particular observed data-set X using the model to

some specified precision. If the model is perfectly predictive, no additional

information is required to encode the observations X. The average

amount of information to encode N observations is the entropy (e.g., see

C. H. LaMont and P. A. Wiggins, unpublished). Naturally, the information

h is said to be an estimator of entropy H.
Model fitting by maximum likelihood

To fit the model, we use a maximum-likelihood procedure. The maximum-

likelihood procedure selects the model parameters that maximizes the like-

lihood (and equivalently minimizes the information) with respect to the

model parameters,

bhðM;XÞhmin
Q

hðQ;MjXÞ; (6)

cQXhargmin hðQ;MjXÞ; (7)

Q
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where the hat on the parameters denotes that they are the maximum likeli-

hood estimators (MLEs) of the information and model parameters. We can

divide the optimization processes for change-point analysis into two

coupled steps: 1) determining the model noise parameters (qI) given a set

of change-point indices (iI), and 2) determining the change-point indices

themselves. The first step is computationally trivial: we derive explicit alge-

braic equations for the MLEs of the continuous parameters, which are

convex given any set of change-point indices iI. (See the Supporting Mate-

rial for the explicit expressions.) This operation is order N computationally.

In contrast, the optimization of the change-point indices themselves is non-

convex and must be performed numerically. A simultaneous optimization

of n þ 1 states would require the computation of roughly Nn/n! sets of

MLE parameters. To simplify the optimization problem, we use a greedy

binary-segmentation algorithm that is applied recursively to each segment,

subdividing segments until the model selection criterion is satisfied. This

procedure is generically referred to as ‘‘model nesting’’. The algorithm is

described in Box 1. The nesting procedure of optimizing with respect to the

position of a single change-point index only requires the computation of order

N MLEs. Because the MLE parameters can be computed algebraically, the

greedy optimization process is computationally trivial and extremely rapid.
Model selection and the information criterion

One might hope to estimate the size of the model, corresponding to the

number of states n, using the ML procedure, but this procedure is flawed

in the following sense: additional parameters always increase the likelihood

due to overfitting. The solution we advocate can intuitively be understood

as maximum predictivity (C. H. LaMont and P. A. Wiggins, unpublished).

In maximum predictivity, one does not optimize the likelihood of observing

the data-set fit in the ML procedure, but rather the probability of unobserved

data generated by the same stochastic process. This modified procedure can

be understood as minimizing an information criterion, an approximation for

the unbiased estimator of the entropy (12). The canonical information cri-

terion is called the ‘‘Akaike information criterion’’ (AIC) (12,13). It has

long been appreciated that AIC fails to correctly estimate the bias in the
BOX 1 Greedy Binary-Segmentation Algorithm

1) Initialize the change-point vector: i ) {1}

2) Segment model cMðiÞ
a) Compute the entropy change that results from all possible

new change-point indices j:

Dhj)bhðfi1;.; j;.; ingjXÞ � bhðijXÞ: (8)

b) Find the minimum entropy change Dhmin, and the

corresponding index jmin.

c) If the entropy change plus the nesting complexity is <0:

Dhmin þ k�<0; (9)

Then accept the change point jmin.

i) Add the new change point to the change-point vector:

i)fi1;.; jmin;.ing: (10)

ii) Segment model cMðiÞ
d) Else terminate the segmentation process.

A schematic description of the greedy algorithm for determining

change-point indices. The nesting complexity is defined as the differ-

ence in the complexity on model nesting: k_h Knþ1 – Kn. In the expres-

sions above, the information estimator bh is evaluated at the respective

MLE parameters bq given the change-point indices i.
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context of change-point analysis. We recently demonstrated that this failure

is due to the presence of unidentifiable parameters (e.g., Watanabe (14)).

We have proposed an information criterion, the FIC, which accounts for

parameter unidentifiability (C. H. LaMont and P. A. Wiggins, unpublished).

FIC is defined as

FICðX;MÞ ¼ h
�cQX;M

��X�þK�cQX;M
�
; (11)

where K is intuitively understood as a complexity function that penalizes

the addition of new parameters but is rigorously defined as the bias in the

estimator of the cross entropy. (Note that this complexity is analogous to

the AIC complexity, but the FIC complexity is evaluated using an approx-

imation that is more generally applicable, including in the context of singu-

lar models.)

The power of the information-based approach is as follows: naı̈vely, one

might expect to have to compute the complexity for the entire range of

possible parameter values (e.g., Kerssemakers et al. (8)). This is not the

case for change-point analysis. Surprisingly, the complexity K has a generic

asymptotic form that depends only on the number of observations and the

dimension of the model, greatly simplifying the analysis. This change-point

complexity can be estimated analytically or computed numerically via

Monte Carlo (C. H. LaMont and P. A. Wiggins, unpublished). The analytic

limit can be related to the extrema of discrete-time Brownian bridges in d di-

mensions (C. H. LaMont and P. A. Wiggins, unpublished).

The optimal model, which maximizes the expected model predictivity, is

the model that minimizes FIC:

cMðXÞhargmin
M

FICðX;MÞ: (12)

Again, the power of the information-based approach is clear: the compari-

son of the information criterion (FIC value) can be made between any two

models (as long as FIC is computed with respect to the same data-set X),

regardless of differences in the model parameterization or the number of

model parameters (12). The numerical minimization of FIC using the algo-

rithm described above is effectively instantaneous, facilitating the explora-

tion of many possible model realizations with minimal effort, as we will

demonstrate below.
RESULTS

Change-point analysis applied to tethered particle
motion

In this section, we apply the change-point algorithm to a
biological problem. In the interest of brevity, we will
consider the analysis of one specific example: experimental
tethered-particle-motion (TPM) data in the main text. We
analyze TPM data because it provides a rich signal, which
incorporates three of the four parameters that we have intro-
duced into our state model, while remaining an in vitro
experiment. To demonstrate the breadth of applicability
of the change-point algorithm, we present the analysis of
three other problems (single-molecule-bleaching analysis,
molecular-motor-stepping analysis, and the analysis of cell
motility) in C. H. LaMont and P. A. Wiggins (unpublished).

Finzi and Gelles (15) developed the TPM experiment to
observe DNA looping with single-molecule resolution. In
the assay, beads are immobilized to a coverslip using
DNA tethers a few kilobytes in length. The DNA tether be-
haves like a spring, confining the motion of the bead that



Information-Based Change-Point Analysis 349
undergoes the tethered Brownian motion. The longer the
DNA tether is, the larger the typical Brownian excursions
of the bead from its average position. Protein-induced
DNA looping reduces the effective length of the tether
and therefore changes the character of the bead motion.
The effective tether length is inferred by the analysis of
the bead trajectory. The configuration (looped versus un-
A B

C D

E F

FIGURE 2 Analysis of experimental TPM data: protein-induced DNA loopin

position of the bead shown for 1.5 � 104 frames. In the absence of protein-indu

responding to the unlooped configuration. (B) Position trace for protein-induced D

teen states were identified by change-point analysis. The trace is colored by state

the unlooped and looped state is shown. (C) High-resolution time trace. At t z 5

short-lived states, states 12 and 14. The ER for each of these states is shown. The

state 14 is marginal. (D) Histogram of bead position by state. The histogram for a

unlooped and looped states, respectively. Neither state is well approximated by

probability density functions. (E) Mean position and variance by state. The 95%

identifiable groups corresponding to the unlooped (2, 4, 6, 8, 10, and 16) and lo

low-mobility and moderate-mobility states with mean positions offset from zero

and 14). (F) Variance and nearest-neighbor coupling by state. The 95% confidenc

(E). For states 12 and 14, ε is approximately zero, consistent with bead sticking
looped) is then inferred from the effective DNA tether
length. See the schematic in Fig. 2 B.
Application to simulated data

In the Supporting Material, we model simulated data to
demonstrate the performance of the technique because we
g measured by TPM. (A) Position trace for the no-looping control. The y

ced looping, only a single state is identified by change-point analysis, cor-

NA looping. The y position of the bead shown for 7.5� 104 frames. Seven-

and the state number is shown above the trace. A representative example of

.98 � 104 frames, a high-time-resolution trace is shown, which reveals two

statistical evidence for state 12 is extremely strong whereas the evidence for

ll data and selected states is shown. States 6 and 11 are representative of the

a Gaussian distribution, as demonstrated by the flatness of the peak of the

confidence region is shown for each state. The states cluster into two clearly

oped (1, 7, 11, 13, 15, and 17) states. In addition to these clusters, there are

. The short-lived states with low mobility correspond to sticking events (12

e region is shown for each state. Again, the states form clusters analogous to

. To see this figure in color, go online.

Biophysical Journal 109(2) 346–354



350 Wiggins
can check the fit model against the true simulated model.
Not only is the truth known, but the true model is one of
the candidate models. In short, the analysis demonstrates
that: 1) The change-point algorithm analysis of simulated
data accurately estimates the change-point index positions.
2) The change-point algorithm analysis of simulated data
accurately estimates the noise model parameters in each
state. 3) The information criterion correctly identifies which
parameters are global (equal for all states) versus local (at
least one distinct value among the states) in our simulated
model. 4) FIC predicts that the most predictive model is a
model in which all the states can be identified or clustered
into two sets of states with identical parameters correspond-
ing to the looped and unlooped states, exactly as simulated.
A detailed description of these simulations is presented in
the Supporting Material.
TABLE 1 Model selection for experimental TPM data

Model M (k, ε, m)

Information Criterion

DFIC (Nats)

Number of

States n

Parameters

per State d

L0G 22,920 11 1

GLG 1977 7 1

GGL 1975 7 1

GLL 1833 9 3

LGG 691 13 1

LGL 364 15 3

LLG 355 13 2

LLL, clustered 35 17 4

LLL 0 17 4

We considered eight families of models where the parameters k, ε, and m

were either optimized locally for each state (L) or globally for all states

(G). For each family of models, the FIC value for the optimal model is

shown. The large FIC values for all but the all-local model (LLL) offer

strong statistical support for changes in all model parameters between

states. Unlike the simulated data, the parameters describing the states cor-

responding to the looped and unlooped configurations are statistically

distinct because the IC value for the clustered model is larger than the value

for the LLL model.
Application to experimental data

It is important to note that the existence of a true model
exactly equal to one of the candidate models is an unrealistic
convenience of simulated data. In practice, experimental
data is always extremely complex and TPM data is no
exception. Therefore, the application of change-point anal-
ysis to experimental data is a more important and an inter-
esting test of the techniques discussed in this article.

We apply the change-point analysis to experimental data
from the lab of D. Dunlap (Emory University, Atlanta, GA).
The data captures the DNA looping dynamics of the lac
repressor (LacI) with a 2231-bp DNA construct and a
320-nm-diameter bead. On loop formation, the loop size
is 1200 bp and residual DNA tether length is 1031 bp. We
show two data sets in Fig. 2: in Fig. 2 A, we show the y-po-
sition trace for the no-protein control for 1.5 � 104 frames.
In Fig. 2 B, we show the y-position trace for the protein-
induced DNA looping for 7.5 � 104 frames. The frame
delay in both data sets is 20 ms.

As a first step in the data analysis, we need to determine
which family of nested change-point models to analyze. We
set the level slope a ¼ 0 by hand. Now, we need to deter-
mine whether to fit the remaining parameters (k, ε, and m)
as local (L) or global (G) parameters. We perform change-
point analysis for each possibility: in each case, we mini-
mize FIC for the family of nested models to find the optimal
model in the model family. We use an ordered triplet of L
and G parameters to label a model family to denote whether
the parameter vector (k, ε, and m) is described by local or
global parameters in the state model. For instance, LGL de-
scribes a model with local values of k and m, but a global
value for ε. Note that the relation between the discrete
time parameters (k, ε, and m) and the underlying physical
parameters is discussed in the Supporting Material.

Once the family optimum model has been determined, we
record the FIC value for this model, which is the unbiased
estimate of information loss. We also consider a model
Biophysical Journal 109(2) 346–354
that is constrained to be a Gaussian process (ε ¼ 0) rather
than Ornstein-Uhlenbeck, with a global mean (model
L0G) because this was essentially the model employed by
Manzo and Finzi (10). A summary of the analysis of the
simulated data is shown in Table 1. The FIC values have a
large constant offset and therefore only the FIC values
relative to the minimum FIC value (DFIC) are shown in
the table. The model with the lowest FIC is the model
with the strongest statistical support. The relative difference
between the FIC values for each model encodes the relative
strength of the statistical support for the model (remember
that because this is a likelihood-based measure, the absolute
scale of the likelihood has no meaning, and therefore it
cannot be understood as a statistical test of the model).

Our initial expectation (as simulated) was that both the
mean bead position~m and the stiffness k, which parameterize
the diffusion coefficient at high time resolution, would be
global parameters while ε, which is controlled by the tether
length, would be a local parameter. To our surprise, only
models with local parameters for k, ε, and~m (LLL) resulted
in acceptable information criterion, despite incurring a larger
complexity for adding states for all local parameters. The
large information criterion for all models except the LLL
model imply that at least some of the states violate our
assumption that the diffusion constant and mean bead posi-
tions are constant throughout the experiment. We will
examine both the experimental data and the LLL model in
detail to understand this failure. The L0G model (similar to
that employed by Manzo and Finzi (10)) leads to the largest
information loss of the models considered. Despite the poor
fit, it does identify all sufficiently long-lived states, but
misses short-lived states and leads to oversegmentation
due to a failure to correctly model the correlation between
successive bead positions. This model also does not identify
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bead-sticking events, which typically have a mean position
offset. (Note that in this data set, the lifetime of the fluctua-
tions, as parameterized by ε, is sufficiently short as to not
result in the identification of many false-positive states. If
the frame rate was significantly increased or a larger bead
was used at the same frame rate, the oversegmentation
described for the simulated data would occur in the experi-
mental data.)

The data and the LLL model are shown in Fig. 2. Fig. 2 A
shows the analysis of the no-protein control, where the bead
should only be found in the unlooped configuration. This
control is critical in the context of the experimental data to
demonstrate that the change-point analysis does not identify
nonexistent states. Because the true distribution was known
for the simulated data, this control was not required in the
analysis of the simulated data. As expected, no change points
were detected in the no-protein control, consistent with the
algorithm successfully rejecting false-positive states.

Fig. 2 B shows the y-position trace for protein-induced
DNA looping. Although this data may qualitatively appear
similar to the simulated data, it is significantly more com-
plex: 17 states were determined by change-point analysis
and the trace is colored by state with the corresponding state
number plotted above the trace. The characteristics of the 17
states are varied not only in the state parameters but in the
state lifetimes.

Fig. 2 C shows a high time-resolution y-position trace in
which two short-lived states were identified (states 12 and
14). One immediate concern is whether these states are
the result of stochastic fluctuations rather than true transi-
tions. We apply simple statistical metric to answer this ques-
tion: the evidence ratio (ER) (12), which is described in the
Supporting Material. In short, the ER is the ratio of the
model likelihood in the absence of the state over the model
likelihood in the presence of the state corrected for bias;
therefore, a small ER for a state corresponds to strong statis-
tical support. The ER values for each state are plotted in
Fig. 2 C. State 12 shows extremely strong statistical support
whereas the support for state 14 is much weaker. We shall
discuss the physical significance of these states in more
detail shortly.

Fig. 2 D shows the y-position histograms for all data and
selected states. States 6 and 11 are representative of the un-
looped and looped states, respectively. Compared with the
histogram of the simulated data, it is immediately clear
that the experimental probability distributions are too flat
to be Gaussian probability distributions. This is an explicit
example of the added complexity of the analysis of experi-
mental data. We show the histograms for three other states
(3, 12, and 14), two of which we have already discussed.
All three of these states show a significant offset from the
mean position of the majority of the data (my z 0 nm
nm). Although states 12 and 14 show low mobility, state 3
shows an intermediate mobility between state 12 and the
looped states.
Fig. 2, E and F, shows the model parameters plotted by
state. The dotted lines represent 95% confidence regions
computed with respect to the model parameters (k, ε,
and m). As modeled in the simulated data, there are two
well-defined clusters of states corresponding to the unlooped
{2, 4, 6, 8, 10, 16} and looped {1, 7, 11, 13, 15, 17} states,
but there appears be at least one additional loose cluster.
States 12 and 14 are clearly consistent with bead-sticking
events: 1) The variance (k�1) for both states is small. 2)
The mean position is offset from zero. 3) The nearest-
neighbor coupling is consistent with zero (remember that
in the limit where the relaxation time of the bead position
is shorter than the frame delay, ε goes to zero, whereas in
the limit that the relaxation time is infinite, the motion is
diffusion-dominated and ε goes to one). States 3, 5, and 9
appear neither to be stuck, nor to exhibit the expected motion
about a mean position of zero. It is therefore likely that the
tether is stuck to the coverslip, both shortening the tether
and shifting the equilibrium position. Interestingly, these
transitions always occur during the unlooped state. Because
the no-protein data does not show any such states, it appears
likely that this adhesion (sticking) is protein-mediated.
State clustering

In analogy with the simulated data, we now propose a model
in which the looped and unlooped state clusters are
described by the same model parameters, respectively. We
constrain these parameters to be equal over the states in
each cluster (as defined above). The resulting model
(LLL-clustered) leads to an increase in the FIC, suggesting
that in fact not all states in these proposed clusters can be
described by the same parameters. Again, these observa-
tions reveal that the experimental true distribution is far
more complex than the simulated model.
DISCUSSION

In the previous section, we applied FIC to determine the
optimal models for experimental TPM data by minimizing
the estimated information loss. Simulated TPM data is dis-
cussed in the Supporting Material. The analysis of both
simulated and experimental data demonstrated both the abil-
ity of the model selection approach to eliminate unnecessary
parameters (in the context of the simulated data) while re-
taining necessary parameters (in the experimental context).
The analysis provides clear statistical evidence for a
complexity in experimental data which, to date, has been
mostly overlooked. Our central focus is not on the data we
have discussed in the article, but rather to demonstrate an
analytical tool (change-point analysis with FIC model selec-
tion) that we believe will be widely applicable to biophysi-
cal and cell biology problems.

A number of competing methods have been used to
analyze TPM data: half-amplitude thresholding (16–18),
Biophysical Journal 109(2) 346–354
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hidden Markov models (19,20), and variational Bayes (21).
Indeed, our work is not the first application of the change-
point analysis to TPM data: in 2010, Manzo and Finzi
(10) performed a beautiful analysis that harnessed some of
the advantages of change-point analysis. Our analysis im-
proves upon the published change-point analysis in three re-
spects: 1) We improve the resolution of the analysis by
analyzing more of the experimental information by approx-
imating the underlying physics with a better microscopic
model. 2) The improved model results in the statistical infer-
ence of more physically relevant model parameters: the
diffusion constant and the relaxation time for each state
identified by the analysis, as well as the level means that
correspond to the tether location. 3) Finally, because our
analysis is based on an information criterion, rather than
explicit individual likelihood ratio tests, the analysis of the
statistical significance of the results is dramatically
simplified.

As described above (L0G Model), Manzo and Finzi (10)
previously used a change-point analysis to analyze TPM
data, approximating the process as Gaussian (rather than
Ornstein-Uhlenbeck) with a global mean. Clearly, there
are two very important shortcomings of analysis with the
incorrect noise model: 1) As we demonstrated above, the
determination of both the local diffusion constant (variance)
and local mean position allows sticking event to be resolved
and identified. 2) As most clearly demonstrated in the anal-
ysis of the simulated TPM data in the Supporting Material,
the failure to correctly model the correlations among bead
positions (in an Ornstein-Uhlenbeck process) can lead to se-
vere oversegmentation of the data. Therefore, the use of FIC
and the correct Ornstein-Uhlenbeck noise model signifi-
cantly improves the analysis.

But, it is important to note that even when the underlying
physical model is not correct in detail, the analysis can still
result in strong statistical inferences. For instance, if the
TPM experiment really was well approximated by an Orn-
stein-Uhlenbeck process, the histogram for the individual
states would be Gaussian. In fact, the probability distribu-
tions corresponding to individual states are clearly poorly
approximated by Gaussian distributions. The relative stabil-
ity of the method to nonideal data is an important quality
because true experimental processes are generically much
more complicated than the simulated distributions that are
typically invoked to test algorithms (12). It is therefore
natural to ask why the Gaussian process approximation
described in the previous paragraph leads to significant
information loss, while the difference in the modeled and
observed distribution functions is benign. The key differ-
entiator is the effective temporal duration of the model-
violating fluctuations. The Gaussian process approximation
failed because the bead relaxation time was long enough for
the change-point algorithm to model the physics with addi-
tional states (in the Gaussian process model), whereas the
temporal duration of the distribution-function-violating per-
Biophysical Journal 109(2) 346–354
turbations is much too short to result in oversegmentation. If
the true distribution function for the TPM process had very
long tails, there would be very long-lived model-violating
fluctuations and the change-point algorithm (using the Orn-
stein-Uhlenbeck approximation) would lead to oversegmen-
tation of the data. In this case, a more complicated analysis
would be required.

The surprising feature of the TPM analysis was the diver-
sity of states detected and the failure of these states to be
clustered into a small number of statistically identical states
(corresponding to looped and unlooped configurations). Had
we designed a model based on our physical intuition, we
might not have included this possibility. A strength of our
approach is the low computational cost of our algorithm,
which facilitated a less-biased approach whereby we
considered a large number of candidate models. We expect
the data from in vivo experiments to be less ideal still. Cells
may switch between behaviors that are approximately
discrete in nature, but in reality the system is transitioning
between states that are all distinct and cells never truly tran-
sition back to an identical state. Change-point analysis is
well suited to these problems because the algorithm does
not use the trajectory history, except locally, when deter-
mining statistical support for a transition. This is not to
say that building a quantitative model for the system does
not require the clustering of states. On the contrary, we sug-
gested such a clustering in order to interpret the TPM data.
In the context of our analysis, we first studied the distribu-
tion of state parameters that resulted from the change-point
analysis and then made a decision about how to cluster the
states, which was informed both by the distribution of pa-
rameters and by our biophysical knowledge of the system.
A large number of distinct states is probably generically
justified for biological problems.
Competing techniques

In short, change-point analysis using FIC model selection
has many practical advantages over existing tools. As we
have already discussed, our implementation of change-point
analysis leads a significant reduction in information loss in
the context of TPM analysis than the previous implementa-
tion proposed by Manzo and Finzi (10), and is much more
generally applicable than previous approaches (e.g., Wat-
kins and Yang (6) and Kalafut and Visscher (9)).

The Bayesian information criterion (BIC), which can be
understood as the weak-prior limit of a Bayesian approach,
has recently been used for a biophysical change-point appli-
cation by Kalafut and Visscher (9). BIC is already known to
be an asymptotic result that is applicable only at large N
(22), but it is particular poorly suited to the change-point
problem because the BIC complexity is too small for small
N and much too large for large N, and therefore it is difficult
to recommend this approach under any circumstance. (See
the Supporting Material.)
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Little, Jones, and co-workers (1,5,23,24) have recently
introduced a number of convex methods closely related to
change-point analysis. Although convexity is clearly a desir-
able property of an algorithm, the mathematical meaning of
the convexified optimization is less clear. Furthermore, the
regularization constant (the complexity) in these techniques
is an adjustable parameter. Therefore these analyses are
subject (in principle) to the value of an ad hoc regulariza-
tion constant. In FIC, the complexity, although an approxi-
mation, is rigorously defined in terms of the bias of the
estimator of the cross entropy, and is therefore not an adjust-
able parameter.

Hidden Markov models (HMM) provide a powerful
approach to the analysis of systems that transition between
states with unknown emission spectrums (e.g., Rabiner
(11)). Like the change-point algorithm, a maximum likeli-
hood approach to HMMs is also subject to the problem of
overfitting, but a Bayesian approach is free from these short-
comings. For that reason, a significant number of authors
have either undertaken a fully Bayesian HMM analysis
(e.g., Johnson et al. (21), and references therein) or invoked
Bayesian arguments implicitly by a maximum likelihood
approach to HMM, coupled with BIC model selection
(e.g., Greenfield et al. (25)). The Bayesian approach has a
number of drawbacks: in general, Bayesian approaches to
model selection have the disadvantage that they depend
upon prior probability distributions for the model parame-
ters (and models). Like the adjustable regularization con-
stants for the convex methods, the Bayesian analysis is
dependent, at least in principle, on the choice of prior prob-
ability distributions. We expect the fully Bayesian approach
will not result in models that are optimally predictive, and in
particular will result in underfitting for vague priors (C. H.
LaMont and P. A. Wiggins, unpublished). In fact, the under-
fitting problem may be especially severe in the context of
biophysical problems where, as we have demonstrated in
the context of TPM, the assumption that the system returns
to a state that is statistically identical to a previous state is
flawed. Finally, even approximate Bayesian approaches,
like variational Bayes, are computationally demanding.
CONCLUSIONS

We have developed an information-based approach to
change-point analysis, which is computationally efficient,
applicable, tractable, and statistically principled. As illus-
trated by applications to both experimental and simulated
data, the approach is widely applicable to many important
problems in biophysics and cell biology. In analogy to AIC,
FIC is an approximation for the unbiased estimator of infor-
mation loss. The proposed change-point model selection cri-
terion can be rigorously understood as minimizing expected
information loss, in analogy to the use of AIC in other
contexts. We expect that this proposed information-based
approach to change-point analysis will prove attractive to in-
vestigatorswhowish to use a statistically principled approach
free from ad hoc parameters or prior probability distributions.
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I. MODEL DEFINITIONS

A. State model probability distribution

The noise model in a particular state is (i) Markovian, (ii) gaussian and (iii) Stationary. Markovian implies that
the memory of the noise is only a single time step. Stationary implies that the parameters describing the noise are
constant in any given state, although these parameters can clearly change due to state transitions. Gaussian refers
to the distribution of the noise around the mean value. Together these conditions imply that the model for the
probability distribution (q) for observation ~xi, given ~xi−1 takes the following form:

q(xi|xi−1;θ) =

(
k

2π

)D/2
e−

1
2 ξ

2
i , (1)

ξi ≡ k1/2 (xi − xi) , (2)
xi ≡ ε(xi−1 + α) + (1− ε)(µ+ α∆t∗i ), , (3)

∆t∗i ≡ ti − t∗, (4)
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where D is the dimension of the observation ~x, θ is the vector of model parameters and we have made the observa-
tion vector sign implicit for clarity. Clearly these equations can be recast as a discrete stochastic process:

xi = xi + k−1/2ξi, (5)
ξi ∼ ND(0,1D), (6)

where ξi are i.i.d. normally distributed random variables with variance one per dimension D. The connection be-
tween these discrete-time parameters and the underlying physical parameters used to describe the continuous-time
process are discussed here [1].

II. ANALYTIC RESULTS FOR MLE PARAMETERS

A. Preliminaries

In this section we will write the algebraic expressions for the Maximum Likelihood Estimator (MLE) model pa-
rameters θ̂ for a segment of the observations XI . For the sake of brevity, we will drop the subscript I which will
be implied (unless otherwise noted). Furthermore we shall number the indices starting at i = 0 for the boundary
variable and ending at N , the number of variables in the segment. These results are derived in detail elsewhere [1].

The model probability density is

q(~xi|~xi−1;θ) =

(
k

2π

)D/2
exp

[
−k2 (∆~xi − ε∆~xi−1)

2
]
, (7)

∆~xi ≡ ~xi − ~µ− ~α∆t∗i , (8)
∆t∗i ≡ ti − t∗(ε), (9)

where θ is the vector of model parameters:

θ ≡ (k, ε, ~µ, ~α). (10)

The information for the N observations is

h(θ|X) =
ND

2
log

2π

k
+
kV (θ|X)

2
, (11)

where V the summed variance to be defined below.

B. Evaluation by cumulative sum

For computational purposes, it is convenient to define quantities in terms of cumulative sums. These sums can
be evaluated when the minimization is initiated and used throughout the calculation without the need for repeated
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evaluation throughout the minimization process. We define the following cumulative sums:

~Xj ≡
j∑
i=0

~xi, (12)

~Xjk ≡
j∑
i=k

~xi = ~Xj − ~Xk−1, (13)

~X
(ε)
jk ≡ ~xj − ~xk−1, (14)

C
(0)
j ≡

j∑
i=0

~xi · ~xi, (15)

C
(0)
jk ≡

j∑
i=k

~xi · ~xi = C
(0)
j − C

(0)
k−1, (16)

C
(1)
j ≡

j∑
i=1

~xi · ~xi−1, (17)

C
(1)
jk ≡

j∑
i=k

~xi · ~xi−1 = C
(1)
j − C

(1)
k−1, (18)

~P
(0)
j ≡

j∑
i=0

ti~xi, (19)

~P
(0)
jk ≡

j∑
i=k

ti~xi = ~P
(0)
j − ~P

(0)
k−1 (20)

~Pjk ≡ ~P
(0)
jk − tjk ~Xjk, (21)

~P
(ε)
jk ≡ 1

2N (~xj + ~xk−1)− 1
2 (~xj − ~xk−1)− ~Xj−1,k−1. (22)

Note that each of these sums depends only on the observations (random variables X).

C. Level mean MLE

It is convenient to introduce the effective stiffnesses for the level mean:

kµ ≡ N, (23)

and the factors

A(µ) = (1− ε)2kµ, (24)

~B(µ) = (1− ε)2
(
~Xjk +

ε

1− ε
~X
(ε)
jk

)
, (25)

in terms of which, the MLE level mean µ̂ is:

~̂µ(ε;X) =
~B(µ)(X)

A(µ)(X)
. (26)

Note that the MLE level mean depends on ε.

D. Level slope MLE

It is convenient to introduce the effective stiffnesses for the level slope:

kα ≡
N(N − 1)(N + 1)

12
, (27)
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and the factors

A(α) ≡ (1− ε)2kα (28)

~B(α) ≡ (1− ε)2
(
~Pjk +

ε

1− ε
~P
(ε)
jk

)
, (29)

in terms of which, the MLE level slope α̂ is:

~̂α(ε;X) =
~B(α)

A(α)
. (30)

Note that the MLE level slope depends on ε.

E. Coupling MLE

We now substitute the MLE level mean and slope back into the summed variance:

V (~µ, ~α, ε;X) = C
(0)
jk − 2εC

(1)
jk + ε2C

(0)
j−1,k−1...

+ (1− ε)2kµ [ ( ~µ− ~̂µ )
2 − ~̂µ 2 ] ...

+ (1− ε)2kα [ ( ~α− ~̂α )
2 − ~̂α 2 ] , (31)

which is an expression for arbitrary level mean and slope but written more concisely in terms µ̂ and α̂.
Since µ̂ and α̂ depend implicitly on ε, we need to consider four possible cases. For both α and µ we consider the

case where they are either set to an external value or they are set to the respective MLE value. Again, we now make
the following convenient definitions analogous to those made for the level mean and slope:

A(ε) ≡ C
(0)
j−1,k−1 −Rµ(~µ)−Rα(~α) (32)

B(ε) ≡ C
(1)
jk −Qµ(~µ)−Qα(~α) (33)

in terms of which, the MLE coupling ε̂ is:

ε̂(~µ, ~α;X) =
B(ε)

A(ε)
. (34)

The Qs and Rs are defined:

Qµ(~µ) =


0, ~µ = 0

k−1
µ

~Xjk ·
(
~Xjk − ~Xε

jk

)
, ~µ = ~̂µ

−kµ~µ 2 + 2~µ ·
(
~Xjk − 1

2
~Xε
jk

)
, otherwise

(35)

Rµ(~µ) =


0, ~µ = 0

k−1
µ

(
~Xjk − ~Xε

jk

)2
, ~µ = ~̂µ

−kµ~µ 2 + 2~µ ·
(
~Xjk − ~Xε

jk

)
, otherwise

(36)

and the following relations for the level slopes:

Qα(~α) =


0, ~α = 0

k−1
α
~Pjk ·

(
~Pjk − ~P εjk

)
, ~α = ~̂α

−kα~α 2 + 2~α ·
(
~Pjk − 1

2
~P εjk

)
, otherwise

(37)

Rα(~α) =


0, ~α = 0

k−1
α

(
~Pjk − ~P εjk

)2
, ~α = ~̂α

−kα~α 2 + 2~α ·
(
~Pjk − ~P εjk

)
, otherwise

. (38)

In combination, these results lead to algebraic equation that are uncoupled. For instance, if the level slope is set to
zero by hand and µ and ε are both chosen to be their respective MLE values, we first compute ε̂, then using ε̂, we
compute µ̂.
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F. Information

After the summed variance has been computed it is straightforward to compute the information. The MLE stiff-
ness is

k̂(~µ, ~α, ε;X) =
ND

V (~µ, ~α, ε;X)
, (39)

where D is the dimension of the space of the observations ~xi. In terms of the MLE stiffness k, the information can be
written:

h(θ|X) =
ND

2

[
log

2π

k
+

k

k̂(~µ, ~α, ε;X)

]
, (40)

which is a general and exact expression for the information for any parameter set θ that can be computed rapidly
and algebraically without the need for solving any coupled or transcendental equations.

III. GREEDY BINARY-SEGMENTATION ALGORITHM

In this section we introduce an algorithm for selecting the change-point indices i ≡ {iI}I=1..n. This is a nontrivial
problem since not only are the change-point indices unknown, but even the number of transitions (n) is unknown.
The algorithm described here is called the Binary Segmentation Change-Point Algorithm and has been the subject
of extensive study (e.g see the references in [2]). The Change-Point Algorithm is at its heart a data segmentation
algorithm. The sequence of the observations is always maintained, but the data is divided into partitions, as spec-
ified by the change-points i ≡ {iI}I=1..n. Every binary segmentation is greedy: i.e. we choose the change point
that minimizes the information loss in that given step, without any guarantee that this is the optimum choice over
multiple segmentations. The family of models generated by successive rounds of segmentation are said to be nested
since successive changes points are added without altering the time indices of existing change points. Therefore, the
previous model is always a special case of the new model. The binary segmentation process is shown schematically
in Figure 1. In each step, after the optimum index for segmentation is identified, we statistically test the change in
information loss (due to segmentation) to determine whether the new state is statistically supported. The algorithm
is written explicitly in Table I in the main text.

In some situations the Change-Point Algorithm can suffer from non-convexity: Any possible segmentation leads
to an increase in the unbiased estimator of information loss, but subsequent segmentation operations lead to reduc-
tions in the unbiased estimator of information loss. To avoid this problem, we typically segment the data using a
complexity term half the true complexity. After the segmentation processes has been terminated, we reset the com-
plexity term to its true value and merge neighboring regions using a greedy algorithm, choosing there merger that
leads to the largest decrease in the unbiased estimator of information loss. The algorithm is written explicitly in
Table I.

IV. STATISTICAL TESTS FOR CHANGE POINTS

There are two principle non-Bayesian classes of tests used to evaluate the existence of a change point1. These are (i)
the Frequentist Likelihood-Ratio Procedure Test (LPT) and (ii) the Informational-Based approach. Chen and Gupta have
compiled a summary of the literature which gives an extensive list of examples of each procedure as well as others
[2]. The LPT test leverages detailed knowledge of a test statistic that has been specifically derived for a particular
model. In an LPT test, the existence of a change point is tested against the null hypothesis that there is no change in
a specified interval. A confidence level must be chosen by the investigator to test the null hypothesis. In some case
there seems to be fairly general agreement about the correct statistic. For instance, to test for a level mean change for
1D observations xi that are assumed to have equal and known variance, the U test statistic is used [2]. In the case of
the rather general model that we have proposed, there are no existing test statistics to the author’s knowledge. We
therefore propose to take the information-based approach.

1 We use the word test in an informal sense here since model selection criterion are not rigorously considered a statistical test.
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Greedy Merge Algorithm

1. Merge state of model M̂(i):

(a) Compute the entropy change that results from all possible state mergers:

∆hI ← ĥ(i|X)− ĥ({...,�iI , ...}|X), (41)

(b) Find the maximum entropy change ∆hI , and the corresponding index Imax.

(c) If the entropy change plus the nesting complexity is less than zero:

∆hI + k− > 0 (42)

then then remove change-point iI
i. Add the new change-point to the change-point vector.

i← {...,�iI , ...} (43)

ii. Merge state of model M̂(i).

(d) Else terminate the merger process.

TABLE I: The Greedy-Merge Algorithm.
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FIG. 1: Schematic of binary segmentation. To segment a partition, the information change due to placing a new boundary at each
time point is computed. (The dashed red and green lines represent partition positions.) At each boundary position, a maximum
likelihood fit is performed to the data (top panel, blue dots) in each of the two new partitions, resulting in the solid curves (top
panel, red and green for the respective boundary positions). For each boundary position, an information change is computed
(bottom panel). The partition is placed at the position that minimizes the information change (red dashed line), which maximizes
the likelihood.

At the time Chen and Gupta wrote their review, the Bayesian Information Criterion (BIC) was essentially the only
viable information-based approach. We recently proposed a new information criterion: the Frequentist Informa-
tion Criterion (FIC). Note that we have proposed that this information-based approach and the LPT approach are
essentially equivalent [1, 3].

V. ASYMPTOTIC SCALING OF THE COMPLEXITY FOR THREE INFORMATION CRITERIA.

We will not discuss the computation of the complexity here due to space limitations. A detailed description is
given in Ref. [1].
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The resolution of the Change-Point Algorithm is determined by the size of the complexity K in the information
criterion. We now present a brief comparison of the FIC approximation for the complexity with two competing in-
formation criteria: the Akaike Information Criterion (AIC) and the Bayesisan Information Criterion2 (BIC). Consider
the change in the information (∆h) on the addition of a new state, parameterized by d local parameters describing
the noise model. The additional state is considered predictive if it is larger than the nesting complexity, which is
equal to the difference between the post and pre nesting complexities:

−∆h > k− ≡Kn+1 −Kn. (44)

The asymptotic values for the nesting complexities for the three information criteria are:

−∆h > k− =


d, AIC (pathological)

2 log logN + O(log log logN), FIC
1
2d logN, BIC

, (45)

where we have assumed that the number of observations N is large and we have only preserved the leading order
contribution to the complexity in the case of FIC. Note that the AIC complexity is known to be too small to terminate
the segmentation process due to presence of unidentifiable parameters. On-the-other-hand, the Bayesian approach
(as approximated by BIC) is known empirically to prevent over-fitting, at least in the asymptotic limit (large N ,
e.g. [5]). But, is the BIC complexity efficient in the sense that it balances the competing mechanisms of information
loss of over and under-fitting to optimize model predictivity? Since FIC is defined to optimize the predictivity, BIC
is only optimal when it is equal to FIC. In the asymptotic limit, the FIC complexity is expected to be smaller than
the BIC complexity in two respects: In FIC (i) the leading order contribution to the complexity is independent of
dimension of the noise model d and (ii) log logN clearly increases more slowly with N than logN . Therefore in the
large N limit, the use BIC leads to under-fitting. We have also demonstrated that BIC also leads to overfitting at
intermediate to small N values where its the justification for its applicability is somewhat ambiguous in any case [1].

Note that we do not recommend the direct application of the asymptotic FIC complexity since the complexity
converges to the 2 log logN limit very slowly. We therefore advocate a Monte Carlo computation of the complexity.
Since the complexity is clearly very weakly dependent on N , we advocate the generation of a lookup-table from
which complexity values can be interpolated on demand. See Ref. [1].

VI. APPLICATION TO SIMULATED DATA

We analyze simulated TPM data to test the performance of the Frequentist Information Criterion (FIC) and the
Change-Point Algorithm under ideal circumstances.
Data simulation: The microscopic physics is a discrete Ornstein-Uhlenbeck Process which obeys Equation 6 with
k−1 = 1200 nm−2, ~µ = 0 nm, and ε alternating between the values of 0.92 and 0.70 by state. Naı̈vely this would
appear to be a fairly good model for the TPM experiment: (i) Repressor-DNA binding induces DNA looping, reduc-
ing the effective tether length without changing the mean spatial position of the bead; therefore we expect the mean
position ~µ to be equal for all states. (ii) Similarly, diffusion is dominated by the movement of the bead; threfore we
would expect the diffusion constant to be equal for all states3. The diffusion constant is parameterized by the stiff-
ness k. (iii) Repressor binding shortens the effective DNA tether length by looping the tether. The DNA tether can
be approximated as a linear spring with a tether-length-dependent spring constant. This spring constant is param-
eterized by the nearest-neighbor coupling ε and therefore we expect ε to be state dependent. The explicit mapping
between the discrete-time stochastic parameters and the physical parameters is derived in Ref. [1]. In the interest of
clarity we shall discuss results only in terms of the discrete parameters fit in the model, rather than the extrapolated
physical parameters. We simulated a 2D trajectory with 5 × 104 frames and four transitions corresponding to five
states. The simulated data are shown in Figure 2.
Analysis of simulated data. As a first step in the data analysis, we need to determine which family of nested
change-point models to analyze. We set the level slope α = 0 by hand. Now, we need to determine whether to fit the
remaining parameters (k, ε and µ) as local (L) or global (G) parameters. We perform Change-Point Analysis for each

2 Notes that despite its name, BIC is not an information criterion in the strict sense that it can be understood as an estimator of the cross entropy.
See e.g. [4].

3 We fluid coupling to the coverslip and the change in the effective diffusion constant as a result of the finite frame rate.
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Model M Information Criterion Number of States Parameters
(k, ε, µ) ∆FIC (nats) n per State d

L 0 G 67,158 111 1
G G L 1,584 1 2
L G L 1,561 4 3
L G G 1,559 5 1
L L L 10 5 5
G L L 8 5 3
L L G 4 5 2
G L G 2 5 1
G L G Clustered 0 5 1

TABLE II: Model selection for simulated TPM data. We considered eight families of nested models where the parameters k, ε
and µ are either optimized locally (L, a distinct value for each state I) or globally (G, identical values for all states). For each
model family, the information criterion FIC is computed for the optimal change-point model (which minimizes FIC). The overall
optimum model is chosen by minimizing FIC with respect to these minimal family models. In this case, the GLG model results
in the minimum FIC, which corresponds to global (G) values for both µ and k and local state-specific values (L) for ε. A further
reduction in FIC is achieved by clustering the states into two cluster corresponding to looped and unlooped states with common
model parameters. We have grouped the models into three categories: unacceptable (top), acceptable (middle) and optimal
(Bottom). All models except those with global values for ε lead to acceptable values for ∆FIC. Model “GLG Cluster” results in
the smallest information loss since it contains the minimum number of parameters required to describe the data.

possibility: In each case, we minimize FIC for the family of nested models to find the optimal model in the model
family. Once the family-optimum model has been determined, we record the FIC value for this model which is the
unbiased estimate of information loss. We also consider a model that is constrained to be a gaussian process (ε = 0)
rather than Ornstein-Uhlenbeck with a global mean (model L0G) since this was essentially the model employed by
Finzi and coworkers [6]. A summary of the analysis of the simulated data is shown in Table II. In practice, the FIC
values have a large constant offset and therefore only the FIC values relative to the minimum FIC value (∆FIC) are
shown in the table. The model with the lowest FIC is the model with the strongest statistical support. The relative
difference between the FIC values for each model encodes the relative strength of the statistical support for the
model. Four out of the initial eight models (black text) result in small information loss and are therefore expected
to be close approximations to the truth. (We shall discuss the ninth, clustered model shortly.) As one might expect,
the only models which fail are those in which ε is made global (gray text). Remember, this was the only parameter
that changes between states in the simulated data and therefore we expect the analysis to fail when all states are
constrained to take the same parameter value. By far the worst model is L0G (similar to that employed by Finzi and
coworkers). It drastically overestimates the number of states, resulting in enormous information loss. As explained
in the previous section, the correlations between successive observations in an Ornstein-Uhlenbeck Process are not
accounted for by the microscopic model when ε = 0; therefore these correlations lead the Change-Point Algorithm
to call states to explain these correlations. It should be noted that this is only a problem for states with ε close to one.
In the experimental data from the Dunlap Lab discussed in the next section, ε is small enough to avoid this artifact.
The remaining four models (black) are all acceptable, but the optimal model is the model where only ε is local: GLG
(black). Remember that from the perspective of Maximum-Likelihood, more model parameters always results in a
better fit and therefore choosing k and µ as global parameters is a non-trivial success.

We now turn our attention to a detailed look at the LLL model where all parameters are local. Although this is not
the optimal model, the analysis of this model will be more pertinent to the analysis of the experimental data. The
locations of the change points in both the GLG and LLL models were identical and the smaller GLG FIC value is due
only to the reduction in information loss due to over-parameterization of the LLL model.

Since we are analyzing simulated data, we can check the fit model against the known true model. Every simulated
data set generated (10) produced five states with accurately positioned change-points. The simulated data and the
LLL model are shown in Figure 2. An experimental schematic is shown in Panel A, superimposed on the y-position
trace of the bead. In the background of Panel A, the simulated trace of the y-position is shown, colored by state
as identified by the Change-Point Algorithm with the state number plotted above the trace. To be clear, both x
and y positions of the bead are simulated and analyzed but only the y positions are shown in the figure. The true
change-point positions are known and are shown with dashed black lines. The determination of the change-points
is extremely accurate, as is clearly observed in the zoomed region of the trace, shown as an inset in Panel A. The
median distance between the estimated change point and the true change point was 10 frames in our simulations
and analysis. This precision depends on the model parameters simulated. The qualitative features of Ornstein-
Uhlenbeck Process are also clearly illustrated by the zoomed trace. On short times, the bead diffuses but on longer
times the bead shows an autoregressive motion towards the mean position. ε parameterizes the lifetime of these
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FIG. 2: Analysis of simulated TPM data. Panel A: Experimental schematic and y-position trace. The y-position trace is shown
for 5 × 104 frames. Two classes of states are clearly identifiable: Unlooped and looped states with larger and smaller variance
in bead position (respectively) resulting from changes in the effective tether length. Change-point analysis was employed to
indentify the system state and the traces are colored by state with the state number plotted above the trace. The true change
points are shown as dashed black lines. We have shown a high-time-resolution inset in the trace for the transition between states
3 and 4 to show the accuracy of the change-point detection. Panel B: Histogram of y-position by state. The histogram of all
y-positions and positions by state are shown. Two types of states are observed: an unlooped state (1, 3, 5) and a looped state
(2, 4). Panels C & D: State model parameters. Dotted curves represent 95% confidence regions for parameter values by state.
Black points represent true parameter values. The clusters corresponding to the looped and unlooped states are clear in the plot
of stiffness k = σ−2 versus nearest-neighbor coupling ε. Since all states have the same values of µ and k, only a single cluster is
observed in the mean versus variance plot.

fluctuations. In Panel B, the histogram of bead y-position is shown for each state. Unlike the experimental data, the
probability distributions are gaussian. In Panels C and D the state model parameters are shown by state. The dotted
curves represent the 95% confidence region for each, colored by state. As the reader can see, the model parameters
are correctly estimated by the analysis.
State clustering. The tight clustering of states {1, 3, 5} and {2, 4} in panels C and D immediately suggest that these
states are described by identical parameters. Again, it is straight forward to investigate such a model: We start
with the optimal GLG model and constrain all parameters to be equal for the two state clusters respectively4. The
resulting FIC value for the model “GLG Clustered” is smaller than the GLG model and therefore optimal. Again,
this should come as no surprise since this was precisely the model that was simulated.

In summary, we have optimized families of nested models with different numbers of state parameters using the
Change-Point Algorithm and the Frequentist Information Criterium (FIC). The resulting optimal models were then
compared using the FIC information criterion to choose between different families of models. This technique enabled

4 It should be note that automated clustering poses problem similar to the Change-Point Algorithm. Many techniques have been proposed. E.g.
see references in [7].
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us to identify the optimal model with the same number of model parameters as the true model that was simulated.
The optimal model identified change points (state transitions) that were essentially identical to the simulated model
and the resulting estimated parameters closely matched those simulated. Although this result is satisfying, it is not
necessarily indicative of success in the context of experimental data. It is important to note that the existence of a true
model with a finite number of model parameters and furthermore a true model exactly equal to one of the candidate
models is an unrealistic convenience of the analysis of simulated data [4].

[1] Wiggins, P. A., 2015. The development of an information criterion for Change-Point Analysis with applications to biophysics
and cell biology. Submitted to PRE. .

[2] Chen, J., and A. K. Gupta, 2007. On change point detection and estimation. Communications in Statistics–Simulation and
Computation 30:665–697.

[3] Wiggins, P. A., 2015. The Frequentist Information Criterion (FIC): The unification of information-based and frequentist infer-
ence. In preparation. .

[4] Burnham, K. P., and D. R. Anderson, 1998. Model selection and multimodel inference. Springer-Verlag New York, Inc., 2nd.
edition.

[5] Kalafut, B., and K. Visscher, 2008. An objective, model-independent method for detection of non-uniform steps in noisy
signals. Computer Physics Communications 179:716–23.

[6] Manzo, C., and L. Finzi, 2010. Quantitative analysis of DNA-looping kinetics from tethered particle motion experiments.
Methods Enzymol 475:199–220.

[7] Watkins, L. P., and H. Yang, 2005. Detection of intensity change points in time-resolved single-molecule measurements. J Phys
Chem B 109:617–28.


	An Information-Based Approach to Change-Point Analysis with Applications to Biophysics and Cell Biology
	Introduction
	Materials and Methods
	A noise model for biophysical signals
	The model dimension
	The likelihood and information
	Model fitting by maximum likelihood
	Model selection and the information criterion

	Results
	Change-point analysis applied to tethered particle motion
	Application to simulated data
	Application to experimental data
	State clustering

	Discussion
	Competing techniques

	Conclusions
	Supporting Material
	Author Contributions
	Acknowledgments
	References


