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ABSTRACT The establishment of homeostasis among cell growth, differentiation, and apoptosis is of key importance for
organogenesis. Stem cells respond to temporally and spatially regulated signals by switching from mitotic proliferation to asym-
metric cell division and differentiation. Executable computer models of signaling pathways can accurately reproduce a wide
range of biological phenomena by reducing detailed chemical kinetics to a discrete, finite form. Moreover, coordinated cell move-
ments and physical cell-cell interactions are required for the formation of three-dimensional structures that are the building
blocks of organs. To capture all these aspects, we have developed a hybrid executable/physical model describing stem cell
proliferation, differentiation, and homeostasis in the Caenorhabditis elegans germline. Using this hybrid model, we are able
to track cell lineages and dynamic cell movements during germ cell differentiation. We further show how apoptosis regulates
germ cell homeostasis in the gonad, and propose a role for intercellular pressure in developmental control. Finally, we use
the model to demonstrate how an executable model can be developed from the hybrid system, identifying a mechanism that
ensures invariance in fate patterns in the presence of instability.
INTRODUCTION
Organogenesis in multicellular organisms is a highly reli-
able process, achieved by robust temporal and spatial
signals transmitted and received by cells within a tissue.
In this process, populations of mitotic and apoptotic cells
within an organ achieve homeostasis. The movement of
cells in a growing organ, triggered by cell division or death,
may initiate signaling events and differentiation—thereby
coupling controls explicitly to the cellular dynamics.

An organ exemplifying this problem of multiscale control
of development is the Caenorhabditis elegans germline
(Fig. 1 A) (1–3). The C. elegans gonad is formed by a pair
of U-shaped tubes that are each connected with their prox-
imal ends to a common uterus. In the distal region of each
gonad arm, germ cells form a multinucleate syncytium, in
which the germ-cell nuclei line the outer gonad perimeter
and each nucleus is partially enclosed by a plasma mem-
brane but connected by a shared cytoplasm (i.e., the rachis)
that fills the inner part of the distal arm. In the bend region,
which connects the distal and proximal gonad arms, the
germ cells become cellularized and start oogenesis. As the
differentiating, immature oocytes enter the proximal arm,
they then grow in size, become stacked in single-file, and
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proceed toward the uterus. This process is controlled by
the local signaling molecules present in different regions
of the gonad. At the distal tip of each arm, a DELTA signal
from the somatic distal tip cell activates NOTCH signaling
to promote mitosis and establish a pool of regenerating stem
cells (4–7). As this stem cell niche fills, mitotic cells move
out of the distal zone and no longer receive the DELTA
signal from the distal tip cell. As a consequence, the cells
enter meiosis (8,9). Continued pressure from mitotic divi-
sion in the distal zone drives meiotic germ cells toward
the bend region at the end of the distal arm. RAS/MAPK
signaling is activated in the distal arm to promote progres-
sion through the pachytene stage and entry into diplotene
(10–14). Finally, as the cells move through the bend into
the proximal arm they enter diakinesis, turn off RAS/
MAPK signaling, cellularize, and grow in size to form
oocytes. However, it has been estimated that at least 50%
of all germ cells undergo apoptosis at the end of the distal
arm near the bend region, instead of initiating oogenesis
(15,16). Hyperactivation of the RAS/MAPK signaling
pathway causes—directly or indirectly—an increased rate
of apoptosis (17–19). The immature oocytes in the proximal
arm move toward the spermatheca at the proximal end,
where a sperm signal induces oocyte maturation and cell
cycle progression by reactivating the RAS/MAPK pathway.
Thus, germ cell homeostasis is achieved by the competition
of mitosis, fertilization, and apoptosis, which maintain a
steady number of germ cells. This progression of states,
mitosis / pachytene / diplotene / diakinesis, from
http://dx.doi.org/10.1016/j.bpj.2015.06.007
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FIGURE 1 Images of the C. elegans germline and our model. (A) Micro-

scopy images of the germline. (B) The complete physical model of the germ

cells. Cells in the distal tip undergo mitosis in response to DELTA, and

movement out of the distal tip initiates cell behavior shifting to meiosis

and entry into pachytene stage I (orange). RAS activation in the pachytene

region causes progression through pachytene and entry into diplotene

(green). In the bend region, germ cells progress into diakinesis (blue), begin

oogenesis, and move into the proximal arm. The first 150 oocytes are fertil-

ized at the end of the proximal gonad arm and removed from the simulation.

Instead of progressing through diplotene/diakinesis, approximately half of

the germ cells undergo apoptosis. After fertilization has ceased, the tube be-

comes blocked and oocytes cease moving. (C) A simplified model of fate

progression in germline cells. DELTA activates NOTCH, triggering mitosis.

Once a cell moves out of a DELTA-rich environment, cells enter pachytene

where RAS activation causes pachytene exit and entry into diplotene or

apoptosis. As RAS is downregulated, cells progress into diakinesis. Finally,

the major sperm protein (MSP) induces oocyte maturation in the most prox-

imal oocyte by reactivating the RAS/MAPK pathway.
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the distal tip region up to the proximal gonad end, is
invariant in the wild-type (20). Uniquely in C. elegans, mu-
tations that activate germ cell mitosis lead to the formation
of germ-cell tumors (20).

The development of cells in C. elegans germline is there-
fore controlled by the intersection of both physical forces
exerted between cells and the internal signal transduction
networks acting within individual cells. Models of the germ-
line must therefore capture both of these phenomena to
accurately describe the process. Executable models (also
known as formal models) have been established as a power-
ful technique for describing cellular signaling networks
(21–24). In contrast to other types of models that aim to
represent a literal representation of physico-chemical prop-
erties, executable models capture the underlying function of
the cell in a more abstract description. In modeling the func-
tional behavior of proteins and genes in a cell (20),
we derive a finite, discrete model of development, which
accurately describes observed behaviors (25–27). Such
models have the further advantage of being amenable to
model-checking approaches. These methods offer guaran-
tees of model behavior through analytical techniques, while
avoiding the need for explicit exhaustive simulation (28,29).
Despite their successes, however, executable approaches
cannot be easily applied to three-dimensional biophysical
systems. Previously, Beyer et al. (30) showed that a
molecular dynamics approach could be used in a physical
model of the C. elegans germline to describe the physical
motions of growing cells. In our approach, we applied the
principles of Brownian dynamics to model the movement
of entire cells in time and space. Brownian dynamics is
a lattice-free, physically realistic implicit solvent model of
physical motion originally developed for atomically
detailed systems. Particles in Brownian dynamics simula-
tions have no momentum due to a high friction environment,
and as such offer a powerful framework for considering the
motions of large entities such as cells. Moreover, it is being
increasingly applied to the analysis of micrometer-scale
cellular and physical systems (such as polymer/clay nano-
composites (31), and rheological systems (32), cell swim-
ming (33), and cell adhesion (34)), demonstrating its
appropriateness for considering the dynamics of developing
cells in a tissue. To accurately describe the development of
the C. elegans germ cells, we have combined these two
types of model (physical and executable) into a single
hybrid, multiscale model. To link the physical and execut-
able models, one requires an interface between the two
models describing how spatial location and biophysical
properties of the cells influence their signaling states, and
vice versa. This interface defines how cells grow, divide,
die, and respond to external signals.

Here we present such a hybrid approach for modeling the
development of oocytes from stem cells in the C. elegans
gonad. We take two standard methods to describe execut-
able signaling behavior (using qualitative networks (35))
and physical movements (using Brownian dynamics (36)),
and combine them into a hybrid model. Using this hybrid
model, we investigate the mechanisms preventing clonal
dominance, the role of apoptosis in maintaining germ cell
homeostasis, and the control of fate progression through
directional flow.
MATERIALS AND METHODS

Cells in a hybrid model

Each cell in the system consists of a single particle and a single qualitative

network (QN) (35). Particles describe the physical parameters, including

location in space, whereas the QN describes the signaling state of the

cell. At each time step of the simulation, the state of the system is updated.

A system update consists of all, some, or none of the following functions

applied to the system: an update of the QN (following its formalism defined
Biophysical Journal 109(2) 428–438
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below); an update of the particle (using a Brownian dynamics integrator);

and a hybrid update (changing the QN according to some state of the

particle and vice versa, see Fig. 2). Each of these updates is described

below.
Qualitative networks

A quantitative network (QN) is formally defined as follows: a QN, Q ¼
(V, T, N), is described by a set of m variables V ¼ [v1, ., vm], which can

each have integer values in the range [0, ., N] and are each associated

with a single target function T ¼ [T1, ., Tm]. The value of each variable

corresponds to the quantity of a substance in the cell, or the activity of a

substance in the cell (i.e., 0 ¼ off, N ¼ maximum activity), and this

granularity can differ between variables. For example, a variable represent-

ing VAB1 can have a value of 0 or 1, representing the off-/on-states of the

protein. The target function associated with each variable describes how the

quantity or activity of the substance varies gradually based on its activators

and inhibitors. For example, in the model the function of NOTCH is depen-

dent on the value of the DELTA variable: if DELTA is equal to 1, the value

of Notch in the next step is equal to 1. The default target function is calcu-

lated from the difference between the average of the activating inputs and

the average of the inhibiting inputs (i.e., the average difference). A state

of the network s is a value for all V in Q, and all states are considered initial

states.

The update function for a QN is defined as follows from state s¼ (d1, d2,

., dm). Here, each d is the value of a variable at a point in time, i.e., a state

of the system is an assignment of a single value to each variable. The next

state s0 ¼ (d1
0, d20, ., dm

0) is computed by updating each variable as

d0
y ¼ dy � 1 if TyðsÞ<dy and dy>0;

d0
y ¼ dy þ 1 if TyðsÞ>dy and dy<N;

d0
y ¼ dy otherwise:

That is to say, for a specific variable, the next state of that variable is either

the same, one higher, or one lower. If the evaluated target function (which
takes the value of specific variables from the state of the system s, hence

Ty(s)) is higher than this value, and this value is lower than the upper bound,

the next state of the variable is this state increased by 1. If the evaluated

target function is lower than this state and this state is higher than the lower

bound, the next state of the variable is this state is reduced by 1. In all other

circumstances, the next state of the variable is equal to the previous state.

All variables update concurrently. Thus, all executions end in a cycle of

states that are visited infinitely often. If all executions end in a single cycle,
Biophysical Journal 109(2) 428–438
and that cycle is of length 1 (i.e., T(s) ¼ s, therefore s0 ¼ s), we conclude

that the network is stabilizing. The final state in a stabilizing network is

known as the stable state.

The QN model was developed in the BioModelAnalyzer (BMA) (37).
Brownian dynamics

Physical simulations were performed using a Brownian dynamics simula-

tion (36). Cells are considered to have no long-range interactions. Short-

range interactions are modeled as harmonic repulsion when cell boundaries

overlap (with spring constant 36 pN/mm, estimated based on experimental

data from fibroblasts (38)). Germ cell positions are updated according to the

Brownian dynamics equation

x0 ¼ x þ dt:F:ðg=mÞ þ sqrtð2:kBT:dt:ðg=mÞÞr;
where dt is the time step, F is the sum of the forces experienced by a

cell, g is the friction coefficient, m is the mass, kB is the Boltzmann

constant, T is the temperature, and r is Gaussian-distributed noise with a

mean of 0 and a standard deviation of 1 (taken from the GROMACSmanual

(39,40)). Temperature was set at 298 K, and the friction coefficient (g)

was set to 5 fs (estimated from simulation). Based on the density of an Es-

cherichia coli cell, particles were estimated to have a density of 1.3 pg/mm3,

and cell mass (m) was calculated from the cell radius and density. Avariable

timestep was used with a maximum of 3 s.
Hybrid updates

Every 0.3 s, both the physical model and the QN for each cell are updated.

QNs are updated based on the location of the associated particle in space, or

the amount of (physical) time that a variable in the QN has been in a certain

state. If the particle is in one of a set of defined regions, the value of a single

variable is changed. In the germline model, three regions are defined as

DELTA, Growth factor, and Sperm, which represent the Notch activating

region, the RAS activating region, and the fertilization region. An alterna-

tive model exchanged the RAS activating region with a timed activation and

downregulation of RAS (represented by a transition of the Boolean variable

from 1 to 0) based on time spent in the meiotic and differentiating states.

Physical particles are updated based on both the state of specific variables

in the QN and the physical environment. Cells can grow, shrink, die, or

divide. Cells that divide replace the parent cell with two new particles

and QNs. Daughter QNs have the same state as the parent QN, and the
FIGURE 2 Depiction of the hybrid model up-

dates as a flow chart. The hybrid model is made

of a set of cells, each of which consists of a

physical particle and a single state of a QN.

(Blue) Updates to the physical models; (green)

updates to the QN. Initially, both the cell positions

and QNs are updated independently, based on their

previous state (see the main text for Brownian

Dynamics, and Qualitative Networks). The cell

particles are then updated based on the cell’s phys-

ical properties and the QN (cell development), to

account for growth, division, and death of the cells.

Cells that divide are replaced by two cells whose

total volume is equal to the volume of the parent

cell, and each with a QN in the same state as the

parent. Finally, the QN is updated according to

the new positions and physical properties of the

cell. To see this figure in color, go online.
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new particles have the same volume as the parent particle and are both

displaced along a defined orientation vector (a property of the parent parti-

cle), which crosses the center of mass of the parent particle. Cell growth is

modeled as a linear increase in cell radius over time. Cells that both grow

and divide grow linearly until they reach a defined maximum size threshold,

after which they are replaced by two new cells whose sum volume is equal

to that of the parent. The axis of division is initially assigned to cells arbi-

trarily, and changes direction over time due to Brownian motion. Variability

in cell division length is modeled by randomly modifying the size threshold

for individual cells according to a normal distribution with known proper-

ties. Cell shrinking occurs as a linear reduction in cell radius over time, and

cell death occurs once cells reach a defined minimum size. The probabilities

of random events (e.g., cell shrinking and cell death, see below) are calcu-

lated for a given timestep from a user-defined period of time, and the user-

defined probability of that event occurring in that time period.
Visualization

Cell positions and sizes were visualized using the software VMD (41) for

analysis. States of individual cells were visualized with simulation trajec-

tories in VMD using TCL scripts. Logs of births and deaths were converted

into Newick format and visualized as phylogenies using the programming

language R (http://www.r-project.org/). Plots of rates of mitosis, apoptosis,

and fertilization show that the model predicts fertilization rates within an

order of magnitude of the experimentally observed values (Fig. S1 in the

Supporting Material).
FIGURE 3 QN model of germ cell signaling, rendered in the BMA. Cell

fates, cell cycle events, protein signaling networks, and gene expressions

are represented as separate entities for clarity. Each gene, protein, or fate

is a separate variable in the QN. To see this figure in color, go online.
RESULTS AND DISCUSSION

A hybrid model for germline development in
C. elegans

In the germline, mitotic cell divisions induced by NOTCH
signaling in the distal region generate forces that drive
cells away from the distal tip toward the bend region where
oocyte differentiation is initiated. These forces initially
drive a front of cells out of the distal tip zone, causing
the cells to become meiotic as they move along the tube.
Activation of RAS/MAPK (10) signaling in late pachytene
as cells approach the bend region triggers entry into diplo-
tene (Fig. 1). As cells move into the bend region, MAPK
is downregulated and the germ cells enter diakinesis and
develop into cellularized oocytes. However, at least 50%
of all germ cell undergo apoptosis instead of forming
oocytes. As the oocytes reach the proximal end of the gonad
arm, a sperm-derived signal induces oocyte maturation by
reactivating the RAS/MAPK pathway in the proximal-
most oocyte. Finally, the mature oocytes exit the gonad
through the spermatheca, where they are fertilized, and enter
the uterus.

To capture the different steps of germ cell development,
cells in the hybrid model have two components: a phys-
ical particle described using Brownian dynamics, and a
signaling state described using qualitative networks
(Fig. 3). The dynamics of a cell are controlled by the phys-
ical forces exerted on the particle and Brownian motion,
arising from the collision of atoms with particles (also
known as random thermal motion), which vary depending
on the mass of the particle. The particles additionally have
an internal orientation, which is updated by thermal motion
over the course of the simulation and dictates the axis of
division. The walls of the gonad and the syncytium are
modeled as static particles, forming a barrier, which ensures
cells form a monolayer until the end of the distal arm. The
gonad structure itself is capped at the proximal end of the
gonad, where the arm would lead to the uterus. The size
and shape of this structure was based on experimental
microscopy images. Simulations start from a single cell in
the distal tip region, and run for 21 days, representing the
lifetime of the worm. The signaling state of the initial cell
is an arbitrarily selected state, and changes according to
the presence of local ligands and the QN formalism.
When the gonad is filled with germ cells, it contains the
expected number of germ cells (~1000) (Fig. 1 B).

Communication between the physical and signaling
models occurs through an interface update. This interface
update consists of a physical update, where the state of
the QN model changes the property of the physical model,
and an executable update, where properties of the physical
particle change the executable model. In our model, three
signaling regions are defined for the executable update.
These are cuboid sections of space, representing external li-
gands, which alter individual variables in the executable
model, if a cell enters them. These three regions represent
the presence of DELTA in the distal tip region (the DELTA
zone); the presence of a RAS activating ligand near the
end of the distal arm, before the bend (the RAS zone);
and the presence of sperm/MAPK activating ligands at the
end of the proximal arm (the Fertilization zone) (Fig. 1, B
and C). In the physical update, cells may grow, divide,
and die. Cells that are in mitosis grow over a period of
~20 h, until they divide into two smaller cells, which each
inherit the parent cell’s signaling state. At least 50% of
cells undergo apoptosis, and are therefore removed from
the simulation. Two distinct mechanisms of cell death are
Biophysical Journal 109(2) 428–438
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explored: a single-step model, where cells randomly die and
are instantly removed from the simulation; and a multistep
model, where cells shrink to a threshold size before death
and removal from the simulation. Cells that leave the RAS
factor region and have not entered apoptosis grow if the
pressure from external forces on the cell is below a defined
threshold. Finally, the first 150 oocytes that enter the matu-
ration state are removed from the simulation at the proximal
gonad end to represent oocyte fertilization.
Predictions arising from the model

Mixing of mitotic stem cells avoids clonal dominance

Clonal dominance is the process bywhich single cell lineages
come to dominate a population of cells. This plays a role in
the development of cancers, where single mutated stem cells
reproduce and eventually make up the majority of the popu-
lation of growing cells, increasing the likelihood of further
mutation and ultimately tumor development. In the case of
germline stem cells, clonal dominance would be detrimental
because it would reduce genetic diversity and propagate
harmful mutations. In human systems, the accumulation of
harmful mutations that may result from clonal dominance
would be expected to increase the likelihood of cancers based
on the Vogelstein model of tumor development (42). Given
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FIGURE 4 Simulated lineage of germline cells. (A) The complete lineage of m

are indicated by a fork in the lineage. (Long, vertical shaded lines) Cells have s

(by death or fertilization). Fertilization and apoptosis can be seen to remove entire

made up of a number of different branches due to thermal mixing (the randomiza

just the population of dividing cells at the end of the simulation. The final set of d

would be sufficient to generate ~200 cells to fill the distal tip. To see this figur
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the low likelihood of a cell entering carcinogenesis, it is
reasonable to propose that mechanisms exist to prevent
this, although such mechanisms are not presently known.
Through our model, however, the lineages of the cells can
be tracked and plotted, either as a phylogeny (Fig. 4), or
visualized in three-dimensional space (Fig. 5 and Movies
S1 and S2 in the SupportingMaterial), allowing us to analyze
this behavior directly. Examination of these graphics high-
lighted several unexpected emergent features. Firstly, whole
branches defined after a limited number of divisions can
be seen to stop dividing and either die by apoptosis or be
fertilized. However, the stem cell population at the end of
a 21-day simulation consisted of a handful of separate
branches, separated by up to 13 generations. This would sug-
gest that the probability of any single cell coming to dominate
the germline is relatively low, but that the pool of stem cells
remains relatively diverse (compared to the eight divisions
that are sufficient to fill the distal tip).

Closer examination revealed that, while all germ cells in
the simulation are undergoing thermal motion, the type of
motion varies along the length of the gonad. Mitotic cells
undergo greater lateral motion around the wall of the tube,
while other cells move almost exclusively along the tube’s
length (Fig. 5 B). This arises from the randomized orienta-
tion of the mitotic cleavage planes due to Brownian motion,
combined with the forces generated in mitosis, which allows
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ly dividing cells

odel germline cells descended from a single cell over 21 days. Cell divisions

topped dividing for a period of time and been removed from the simulation

branches of the lineage, but at any one time the pool of proliferating cells is

tion of mitotic planes by Brownian motion). (B) Expanded lineage showing

ividing cells is separated by up to 13 generations. Seven to eight generations
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FIGURE 5 Dynamics of the stem cell population. (A) At 3.5 days, every

cell is given a unique color and all descendants of that cell retain the same

color. In the model, it takes ~18 days for ancestors of one of these cells to

exclusively dominate the distal tip (roughly 22 generations). In principle,

the descendants of a single cell could dominate within eight generations

(7 days). (B) The vector field of average cellular motion across 21 days

(plotted as blue spikes). (White) Cross section of the gonadal wall; (blue

box) distal tip region. In the mitotic region, the forces generated by cellular

division cause cells to move randomly, which in turn causes the averages to

be small and/or directionless. Cells in the pachytene stage and at the edge of

the distal tip zone move clearly in a single direction, driven by forces gener-

ated through division in the distal tip.
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lateral motion along the vector of the cell orientation. The
movements of cells that enter meiosis are driven by the
forces along the gonad in a single direction, and so undergo
less lateral movement. We propose that this increased lateral
motion effectively mixes the stem cell population, and that
this mixing in turn acts as a barrier to clonal dominance. A
deleterious mutation in a single germ cell, which does not
alter division rate, is therefore unlikely to dominate the
stem cell niche due to this thermal mixing, making the
genome more robust to mutagenesis.

Apoptosis reduces cellular flow by killing small cells

Despite the importance of homeostasis in germline develop-
ment, the precise purpose and mechanism of apoptosis in
this system remains unclear. Loss-of-apoptosis mutations,
such as ced-3 loss-of-function alleles, lead to relatively
mild phenotypes and no apparent overgrowth of germ cells
(43). Young (%14-day-old) loss-of-apoptosis mutants show
normal morphology of the germline. In contrast, older
apoptosis mutants, in which sperm supplies have been ex-
hausted and oocytes cannot leave the proximal gonad arm,
demonstrate an abnormal gonad morphology. While gonads
of old wild-type animals still contain single-file, large
stacked oocytes in the proximal arm, apoptosis mutants
contain many smaller oocytes, tightly packed in multiple
rows in the proximal arm (Fig. 6 A).

In our model, MAPK (represented by a Boolean value)
directly activates a chain of proteins, which leads to
apoptosis (also represented by a Boolean value). It has
been observed that the relationship between MAPK and
apoptosis is complex (19); MAPK is a hub for a number
of signaling networks, and is known to be activated by other
pathways (for example, in response to DNA damage
(44,45)) and regulated by additional components (such as
GLA-3 (18)). Moreover, it is not known if apoptosis is initi-
ated after exit from the pachytene by an unknown signal or
directly by RAS/MAPK signaling. Our executable model of
cell signaling here does not aim to reproduce all the
complex quantitative relationships between MAPK and its
inputs, but rather the signal transduction process in the
worm. However, modifying our model to make cell fate
rather than MAPK activity drive apoptosis does not alter
the observed behaviors. In the model, fate determination is
driven by changes in gene expression, which is driven by
RAS/MAPK activity. Therefore, a modification that causes
MAPK-driven-fate changes simply adds more dependencies
between MAPK and apoptosis, and does not change the
relationship.

Analysis of the loss-of-apoptosis scenario highlighted the
need for a negative feedback to limit mitotic growth. Early
models of mitotic division allowed cells to divide without
restriction. In the absence of fertilization (i.e., in female an-
imals) and without apoptosis, cells would continue to divide
despite the increasing overlap and forces between them,
eventually leading to such a high pressure that cells would
move through the gonad wall and rupture the gonadal
tube. To prevent this, we included a negative feedback
loop that stops mitotic growth if the pressure experienced
by the cell exceeds a defined threshold.

Our model accurately reproduces the observed dynamic
morphology of cell-death-defective (ced) mutants (Fig. 6,
A and B). Once the germline is full of cells and fertilization
has started, the germ cells can be seen to adopt a wild-type-
like distribution of cell sizes, with the bend and proximal
arm of the gonad filled with large, single-file oocytes. As
mitotic divisions continue in the absence of apoptosis (while
fertilization is ongoing), the forces generated are sufficient
to force multiple germ cells into the bend. While repacking
of the cells allows for some of them to reorder in young
Biophysical Journal 109(2) 428–438
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FIGURE 6 Effects of apoptosis mutations and

alternative mechanisms. (A) Microscopy images

showing germ cells in wild-type animals, and young

and old Ced-3 loss-of-function mutations. (B) Wild-

type models at 21 days show a distinct pattern

of states across the length of the tube, with large

oocytes in the distal arm and bend, after RAS downre-

gulation. While apoptosis loss-of-function mutations

appear normal at 14 days, the excess flow in cells

caused by the loss from cell death causes smaller oo-

cytes tomove into the distal arm in older worms. Cells

are colored by fate (orange, pachytene; green, diplo-

tene; blue, diakinesis). (C) Microscopy image taken

from Pinto and Hengartner (47) showing apoptosis

preferentially occurring just before the bend (corpses

indicated bywhite arrows). (D) Locations of apoptosis

in two mechanisms of apoptosis (red spheres; trans-

parent spheres show cell positions in a single frame,

for reference). In a single-step model, cells randomly

die and are removed from the simulation immediately,

while in themultistepmodel cells randomly shrink un-

til they reach a minimum size, and then die and are

removed from the simulation. The single-step model

results in deaths evenlydistributed along theRASacti-

vation zone, while in the multistep model cells die

preferentially at the end of the RAS zone. (E) Histo-

gramshowing frequencyof death as a function of loca-

tion in the gonad. The RAS zone ranges from 100 mm

to the bend at 120 mm. (F) Heat maps quantitatively

showing the distribution of deaths around the tube

for different death models. Deaths are evenly distrib-

uted across the radius of the tube.
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worms and grow to fill the tube, over time this leads to
the influx of a larger number of small cells around the
bend of the gonad and into the proximal arm. This ability
of the cells to repack in three dimensions explains the
distinct changes in morphology that occur as result of the
flow-reducing effects of apoptosis. This observation may
intuitively suggest that an increase in the rate of division
(or a loss of fertilization) may lead to a morphology that
resembles the loss-of-apoptosis phenotype, if the rate of
division was able to overcome the rate of death. However,
a limited exploration of models with different division rates
suggests that the model is robust to changes in mitosis rates.
This robustness arises because the packing of growing cells
in the bend can act as a barrier to cell movement, forcing
cells to remain in the growth-factor region for longer periods
of time. This increases the likelihood of the cells dying,
which in turn prevents an overflow of cells occurring as a
result of mitosis.

The technical difficulties in experimentally observing and
tracking the fates of individual germ cells over long time
periods have made it difficult to study the exact causes of
germ-cell death in the absence of external stress. It has
been estimated that in the wild-type, roughly one-half of
all germ cells die by apoptosis instead of differentiating
into oocytes (15,16). Genetic studies have shown that
increasing RAS/MAPK activity causes more germ-cell
Biophysical Journal 109(2) 428–438
apoptosis, possibly due to an accelerated rate of pachytene
exit (17,18,46). The mechanism by which individual cells
are selected to survive or die is, however, not known. In
our model, we have tested two possibilities of how cells
may be selected for apoptosis. In the single-step model,
all cells with active RAS have a defined probability of dying
at any given timestep. Cell death immediately removes that
cell from the simulation. (Fig. 6 D). The alternative multi-
step model defines a mechanism of cell death, where cells
either shrink by a user-defined quantity and probability,
dying when they reach a size threshold, or remain at the
same size. Probabilities are assigned to each cell based on
its rate of cell movement (i.e., time spent in the RAS region)
to give at least a roughly 50% chance of cell death in a
wild-type cell. The effect of loss-of-apoptosis mutations
described above is insensitive to the precise mechanism of
apoptosis.

Each of these two mechanisms has markedly different
dynamics (Fig. 6, D–F). In both models, apoptosis reduces
the flow rate and slows the development of oocytes relative
to the loss-of-apoptosis mutation. In the single-step model
for apoptosis, cell deaths are evenly distributed across the
RAS activation zone (Fig. 6,D–F). In contrast, the multistep
model for cell death leads to the majority of cells dying at
the end of the RAS activation region. The location of
cell death has been reported as at the start of the bend



FIGURE 7 Proving all accessible states lead to a single fix point when

moving from a stabilizing environment to an unstable environment. Cells

at the border between two environments may move back and forth across

the boundary due to diffusive motion. The different environments are rep-

resented by changes in constant values in the model (different conditions).

All accessible states in the two different conditions are enumerated and

tested to find whether they lead to the same fix point or not. This proceeds

as follows: in the stable environment, the stable state is identified (shown as

A). A simulation from state A in the unstable condition is performed until

fix-point B is reached, and the set of states between A and B are collected.

For each state, a simulation is performed in the stable condition until A is

reached, and the set of states encountered in each simulation is recorded. If

these have not been observed previously, simulations are performed in the

unstable condition to determine if they reach fix-point B. This is repeated

until either no new states are found (i.e., all accessible states have been

identified), or an alternative fix point or cycle is discovered.
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specifically (19,47). We therefore propose that cellular
death consists of a multistep process, which increases the
likelihood of entering apoptosis and leads to an accumula-
tion of cell deaths at the end of the distal arm near the
bend region. We further suggest that this multistep process
may be achieved by a process of cell shrinking before
apoptosis. For example, the cellularization and growth of
germ cells entering oogenesis in the bend region may in-
crease the local pressure and thus result the shrinking of
adjacent cells, driving them into apoptosis. While this is
only a single example of a multistep process, this would
have the additional impact of selecting cells that enter
pachytene for death based on their size when entering
meiosis; smaller cells would require fewer steps to reach
the apoptosis threshold and therefore would be more likely
to die. As such, this could provide a mechanism for
removing germ cells from the population that are underde-
veloped. It should be noted, however, that there is, as of
this writing, no experimental proof for such a mechanism.

Cellular flow in the gonad permits robust compartmentaliza-
tion of cell fates

As the germ cells move along the gonad arms, they pass
through four defined states based on their relative location
in the different compartments: 1) mitosis in the distalmost
region, which is activated by DELTA/NOTCH signaling;
2) entry into the pachytene stage of meiotic prophase I,
once NOTCH signaling is terminated; 3a) entry into diplo-
tene, which requires activation of the RAS/MAPK pathway
by an unknown signal, followed by entry into diakinesis
accompanied by oocyte formation in the turn region; 3b) a
pro-apoptotic state as an alternative to entry into diakinesis;
and 4) oocyte maturation at the proximal end of the gonad,
which involves RAS/MAPK activation by a sperm signal.
Therefore, the progression through these distinct fates
must at least partially be defined by the changing environ-
ments the cells are exposed to in the different compartments
of the gonad arms. We can observe this invariant fate pro-
gression in our model (Fig. 1 B). This is noteworthy as there
are five fate variables in the model, which could potentially
exist in 32 unique states. The correct progression observed
in the model both demonstrates the model’s validity and
raises the question of how the alternative potential fates
are avoided to achieve invariance in fate progression across
all wild-type animals.

To address the question of how these compartments arise
and what test conditions are known to disrupt this invariant
pattern, we developed an executable model of the hybrid
system. We represent each compartment in the cell as a
distinct environment. For example, in the distal tip region,
the external signal for DELTA is set to be active, while
external ligands activating RAS are inactive. We then test
the reachable states of the whole cell (including cell fates)
for each compartment, based on the external signals and
the reachable states in the previous compartment. In the first
environment (the distal tip zone), we find that the model is
stable—that is, all initial states eventually lead to a single
final, mitotic state. From this state, cells move into a region
without DELTA/NOTCH activation. The next environment
lacks any external ligands, and analysis in the BMA demon-
strates that in principle, when all states are considered
initial, there are at least two possible end states, and an oscil-
lation. However, we can prove that cells starting from the
stable state in the DELTA/NOTCH active region lead to a
single pachytene state, even if cells move repeatedly into
and out of the DELTA zone (Fig. 7). This occurs because
the stability of the model in the DELTA/NOTCH active state
effectively reduces the accessible states when exiting the
region. Through this mechanism, the stability of the initial
environment can propagate to subsequent environments,
and achieves an invariance in fate progression in the animal
(Fig. 8).

This flow of cells through different compartments there-
fore allows complex decision-making processes between
multiple end states to be encoded in both the protein network
and the structure of the gonad. Our executable models also
give us an opportunity to test alternative mechanisms of
signaling in the gonad.While two external ligands are known
(DELTAandmajor spermprotein (MSP)), the external ligand
used to initiate RAS/MAPK activation has not been identi-
fied. Alternatively, an internal change within the cell may
lead to RAS/MAPK activation, induced by timed events
such as cell-cycle changes. Using our model, we studied
how alternative mechanisms of signaling may achieve this.
Biophysical Journal 109(2) 428–438



FIGURE 8 Fate progressions of germline cells. Germline cells follow an

invariant developmental path from a mitotic state (red), to the pachytene

stage I (orange), to diplotene (green), and finally to diakinesis (blue).

This progression of fates observed in the hybrid model can be abstracted

to an executable model, where we can characterize different mutations in

terms of distinct fate progressions. This new executable model highlights

that any instability of the germline cells in the absence of ligand can always

lead to an invariant fate progression if the initial mitotic state is stable.
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Early models of the gonad included DELTA/NOTCH
signaling, and an external signal that activates RAS/
MAPK in the region before the bend. In this rudimen-
tary model, maturation and fertilizations of germ cells
occurred via a simplistic, disconnected pathway. While
this model was capable of reproducing the invariant fate
pattern across the gonad, individual cells at the first bound-
ary between the early pachytene region and the RAS-active
region transiently showed signs of later differentiation (i.e.,
late diakinesis). This occurred as a result of thermal motion
in the system; cells could briefly move backward across the
boundary and therefore initiate diakinesis.

This observation in the preliminary model is not sup-
ported by available experimental data. Furthermore, while
it correctly describes the overall pattern of the fate progres-
sions, it is incompatible with maturation of the cells being
driven by a later activation of the MAPK. This is because
models that have multiple, alternative fates caused by
MAPK activation (entry into diakinesis versus maturation)
would need to be bistable, and transient activations of late
diakinesis may lead to early maturation of cells before the
bend. This possibility is a property of the model, although
Biophysical Journal 109(2) 428–438
we are not able to comment on the probability of the event
due to intrinsic limitations of the model. Given that this
outcome is possible but is never observed in nature, there
must exist mechanisms to prevent this from arising. We
propose three possible mechanisms by which this may be
achieved: the first option is that fate determination at the
boundary of the signaling regions must be highly buffered.
That is to say, the signaling networks make RAS downregu-
lation a slow process, in order to minimize the probability
that backflow causes premature diakinesis. This buffering
mechanism would need to be highly robust to the effects
of reduced flow that increase the amount of time a cell
resides at the boundary between signaling environments.
The discovery of such a buffering mechanism would support
this assertion. The second option is that a persistent MAPK
activation is initiated by a timed event. And, finally, a third
option is that a transient signal initiates a persistent MAPK
activation. In the second and third options MAPK would
need to be actively downregulated at the entry into diaki-
nesis. Simulations show that if the exit from diakinesis is
timed, small germ cells can escape into the proximal arm.
One prediction arising from both the first and third possibil-
ities would be that there was a clearly definable boundary
where cells moved from one signaling region to another
(similar to the boundary observed in the distal tip zone as
cells exit mitosis). In contrast, if the initiation of MAPK
activation is controlled by a timer (i.e., second option), cells
may enter diplotene at slightly different locations in the
same region of the gonad as the location of entry becomes
dependent on the speed of an individual germ cell.

In light of this observation, and the role of MSP in acti-
vating RAS in oocyte maturation, both the hybrid model
and QN were extended and further refined to explore both
the timed activation of RAS in pachytene and MSP-induced
activation. A new pathway was added to the QN to allow
MSP to RAS via VAB1. To model the timed activation,
the QN was modified to allow a transient input that causes
RAS to become, and remain, active until it is downregulated
by a later signal. In the hybrid model, this first transient
input is initiated by the amount of time spent by in the
pachytene, and the subsequent downregulation is caused
by entry into the bend. These mechanisms exclude the
possibility that any backflow could occur, and as such we
propose that RAS is not activated by an external ligand.
Such a timed event is tied to the meiotic cell cycle, which
we suggest here as a mechanism of timing RAS activation.
We further propose that subsequent RAS/MAPK downregu-
lation mediated by GAP-1/GAP-3 and LIP-1 is linked to
cellularization, as cells separate from the syncytium.
CONCLUSIONS

The development of tools that model the interface between
biological signaling networks and biophysical motion is
an important challenge to understanding stem cells and
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organogenesis in a wide number of systems. Our approach
takes two long-standing formalisms for modeling each of
these phenomena, and has allowed us to connect them in a
single model of oogenesis from stem cells in C. elegans.
This allows us to gain insights into the intersection of cellular
dynamics and signal transduction, which are inaccessible (as
of this writing) by using experimental approaches, and has
generated new predictions. Furthermore, we have also shown
that a simple physical model, even based on limited data, in
the hybrid model reproduces mutant behavior and predicts
plausible physical parameters such as fertilization rates.
Our tool and approach could therefore be easily applied
and adapted to model a wide range of hybrid cellular phe-
nomena. Finally, through the development of executable
models of the hybrid model, we have shown a future route
to allow the development of the organ to be integrated in
yet larger systems. The use of a detailed executable model
in combination with a physical model of the organ structure
could be used to show how other organs and bodies within
organisms interact and generate emergent properties. The
future development and application of these hybrid models
therefore offer unique opportunities for understanding com-
plex development processes.

The predictions generated by this model demonstrate the
type of unique information that can be offered by such
hybrid approaches. The avoidance of clonal dominance by
thermal mixing of the germ-cell population may represent
an important mechanism for avoiding tumor development.
While cancer is a widespread disease, the absolute likeli-
hood of an individual cell of the trillions progressing to
become cancerous is low, raising the question of why
cancers are not more common given the number of opportu-
nities to develop. The mixing of stem-cell populations
would further minimize this by reducing the accumulation
of mutations in populations. Our suggested multistep
shrinkage mechanism for apoptosis gives two potentially
new insights into the role and purpose of cell death in the
gonad: it serves to reduce the flow rate, and it creates
competition between stem cells, selectively killing smaller
cells. This model is consistent with experimental evidence
showing that increased RAS activity leads to smaller oo-
cytes and increased cell death, in addition to other evidence
presented here. Finally, the control of cell fate through
cellular flow offers an explanation for a well-characterized
phenomenon in the germline, allowing for future experi-
mental examination. Together, these insights into stem-cell
development in the germline demonstrate the power of our
approach, and show how hybrid modeling may allow
phenomena over multiple time- and length scales to be suc-
cessfully combined.
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biophysj/supplemental/S0006-3495(15)00589-5.
AUTHOR CONTRIBUTIONS

B.A.H., N.P., A.H., and J.F. conceived and designed the experiments;

B.A.H. performed the experiments; B.A.H., N.P., and J.F. analyzed the

data; A.H. and B.A.H. contributed reagents/materials/analysis tools; and

B.A.H., A.H., and J.F. wrote the article.
ACKNOWLEDGMENTS

We thank Samin Ishtiaq and Aleksandra Watson for valuable discussions.

B.A.H. is presently supported by the Royal Society (University Research

Fellowship).
REFERENCES

1. Kimble, J., and S. L. Crittenden. 2005. Germline proliferation and its
control. WormBook. 1–14.

2. Kimble, J. E., and J. G. White. 1981. On the control of germ cell devel-
opment in Caenorhabditis elegans. Dev. Biol. 81:208–219.

3. Lander, A. D., J. Kimble, ., T. Oskarsson. 2012. What does the
concept of the stem cell niche really mean today? BMC Biol. 10:19.

4. Maciejowski, J., N. Ugel, ., E. J. Hubbard. 2006. Quantitative anal-
ysis of germline mitosis in adult C. elegans. Dev. Biol. 292:142–151.

5. Crittenden, S. L., K. A. Leonhard, ., J. Kimble. 2006. Cellular
analyses of the mitotic region in the Caenorhabditis elegans adult
germ line. Mol. Biol. Cell. 17:3051–3061.

6. Byrd, D. T., K. Knobel, ., J. Kimble. 2014. A DTC niche plexus
surrounds the germline stem cell pool in Caenorhabditis elegans.
PLoS ONE. 9:e88372.

7. Crittenden, S. L., and J. Kimble. 2008. Analysis of the C. elegans
germline stem cell region. Methods Mol. Biol. 450:27–44.

8. Suh, N., S. L. Crittenden,., J. Kimble. 2009. FBF and its dual control
of gld-1 expression in the Caenorhabditis elegans germline. Genetics.
181:1249–1260.

9. Kimble, J. 2011. Molecular regulation of the mitosis/meiosis decision
in multicellular organisms. Cold Spring Harb. Perspect. Biol.
3:a002683.

10. Lee, M. H., M. Ohmachi, ., T. Schedl. 2007. Multiple functions and
dynamic activation of MPK-1 extracellular signal-regulated kinase
signaling in Caenorhabditis elegans germline development. Genetics.
177:2039–2062.

11. Hubbard, E. J. A., and D. Greenstein. 2000. The Caenorhabditis
elegans gonad: a test tube for cell and developmental biology. Dev.
Dyn. 218:2–22.

12. Leacock, S. W., and V. Reinke. 2006. Expression profiling of MAP
kinase–mediated meiotic progression in Caenorhabditis elegans.
PLoS Gen. 2:e174.

13. Ohmachi, M., C. E. Rocheleau, ., M. V. Sundaram. 2002. C. elegans
ksr-1 and ksr-2 have both unique and redundant functions and are
required for MPK-1 ERK phosphorylation. Curr. Biol. 12:427–433.

14. Cha, D. S., U. S. Datla, ., M. H. Lee. 2012. The Ras-ERK MAPK
regulatory network controls dedifferentiation in Caenorhabditis
elegans germline. Biochim. Biophys. Acta. 1823:1847–1855.

15. Galluzzi, L., N. Joza,., G. Kroemer. 2008. No death without life: vital
functions of apoptotic effectors. Cell Death Differ. 15:1113–1123.

16. Bailly, A., and A. Gartner. 2013. Germ cell apoptosis and DNA damage
responses. Adv. Exp. Med. Biol. 757:249–276.

17. Rutkowski, R., R. Dickinson, ., A. Gartner. 2011. Regulation of
Caenorhabditis elegans p53/CEP-1-dependent germ cell apoptosis by
Ras/MAPK signaling. PLoS Genet. 7:e1002238.

18. Kritikou, E. A., S. Milstein, ., M. O. Hengartner. 2006. C. elegans
GLA-3 is a novel component of the MAP kinase MPK-1 signaling
pathway required for germ cell survival. Genes Dev. 20:2279–2292.
Biophysical Journal 109(2) 428–438

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00589-5
http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00589-5
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref1
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref1
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref2
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref2
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref3
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref3
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref4
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref4
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref5
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref5
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref5
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref6
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref6
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref6
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref7
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref7
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref8
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref8
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref8
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref9
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref9
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref9
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref15
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref15
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref16
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref16
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref18


438 Hall et al.
19. Gartner, A., P. R. Boag, and T. K. Blackwell. 2008. Germline survival
and apoptosis. WormBook. 1–20.

20. Killian, D. J., and E. J. Hubbard. 2005. Caenorhabditis elegans germ-
line patterning requires coordinated development of the somatic
gonadal sheath and the germ line. Dev. Biol. 279:322–335.

21. Fisher, J., and T. A. Henzinger. 2007. Executable cell biology. Nat.
Biotechnol. 25:1239–1249.

22. Fisher, J., and N. Piterman. 2010. The executable pathway to biological
networks. Brief Funct. Genomics. 9:79–92.

23. Sadot, A., J. Fisher, ., D. Harel. 2008. Toward verified biological
models. IEEE/ACM Trans. 5:223–234.

24. Bonzanni, N., K. A. Feenstra, ., E. Krepska. 2009. What can formal
methods bring to systems biology? In FM 2009: Formal Methods.
Springer, Berlin, Germany, pp. 16–22.

25. Kam, N., H. Kugler, ., E. J. A. Hubbard. 2008. A scenario-based
approach to modeling development: a prototype model of C. elegans
vulval fate specification. Dev. Biol. 323:1–5.

26. Kam, N., I. R. Cohen, and D. Harel. 2001. The immune system as a
reactive system: modeling T cell activation with statecharts. InHuman-
Centric Computing Languages and Environments. IEEE, Piscataway,
NJ, pp. 15–22.

27. Efroni, S., D. Harel, and I. R. Cohen. 2003. Toward rigorous compre-
hension of biological complexity: modeling, execution, and visualiza-
tion of thymic T-cell maturation. Genome Res. 13:2485–2497.

28. Clark, A., V. Galpin, ., J. Hillston. 2012. Formal methods for
checking the consistency of biological models. Adv. Exp. Med. Biol.
736:461–475.

29. Clarke, E. M., O. Grumberg, and D. A. Peled. 1999. Model Checking.
The MIT Press, Cambridge, MA.

30. Beyer, A., R. Eberhard, ., J. Fisher. 2012. A dynamic physical model
of cell migration, differentiation and apoptosis in Caenorhabditis
elegans. In Advances in Systems Biology. I. I. Goryanin and
A. B. Goryachev, editors. Springer, New York, pp. 211–233.

31. Yamamoto, T., and N. Kanda. 2012. Computational model for
Brownian dynamics simulation of polymer/clay nanocomposites under
flow. J. Non-Newt. Fluid Mech. 181–182:1–10.

32. Yamamoto, T., T. Suga, and N. Mori. 2005. Brownian dynamics simu-
lation of orientational behavior, flow-induced structure, and rheological
properties of a suspension of oblate spheroid particles under simple
shear. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72:021509.
Biophysical Journal 109(2) 428–438
33. Rosser, G., R. E. Baker, ., A. G. Fletcher. 2014. Modelling and anal-
ysis of bacterial tracks suggest an active reorientation mechanism in
Rhodobacter sphaeroides. J. R. Soc. Interface. 11:20140320.

34. Ramis-Conde, I., D. Drasdo,., M. A. J. Chaplain. 2008. Modeling the
influence of the E-cadherin-b-catenin pathway in cancer cell invasion:
a multiscale approach. Biophys. J. 95:155–165.

35. Schaub, M. A., T. A. Henzinger, and J. Fisher. 2007. Qualitative
networks: a symbolic approach to analyze biological signaling
networks. BMC Syst. Biol. 1:4.

36. Gunsteren, W., and H. Berendsen. 1982. Algorithms for Brownian
dynamics. Mol. Phys. 45:637–647.

37. Benque, D., S. Bourton, ., M. Vardi. 2012. BMA: visual tool for
modeling and analyzing biological networks. In Computer Aided
Verification. P. Madhusudan and S. Seshia, editors. Springer, Berlin,
Germany, pp. 686–692.

38. Nawaz, S., P. Sánchez, ., I. A. Schaap. 2012. Cell visco-elasticity
measured with AFM and optical trapping at sub-micrometer deforma-
tions. PLoS ONE. 7:e45297.

39. van der Spoel, D., E. Lindahl, ., H. J. C. Berendsen. 2010.
GROMACS User Manual, Ver. 4.6 Beta1. www.gromacs.org.

40. Hess, B., C. Kutzner, ., E. Lindahl. 2008. GROMACS 4: algorithms
for highly efficient, load-balanced, and scalable molecular simulation.
J. Chem. Theory Comput. 4:435–447.

41. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molec-
ular dynamics. J. Mol. Graph. 14:33–38, 27–28.

42. Fearon, E. R., and B. Vogelstein. 1990. A genetic model for colorectal
tumorigenesis. Cell. 61:759–767.

43. Gumienny, T. L., E. Lambie, ., M. O. Hengartner. 1999. Genetic
control of programmed cell death in the Caenorhabditis elegans
hermaphrodite germline. Development. 126:1011–1022.

44. Wang, Y., S. Wang,., L. Xie. 2014. The roles of DNA damage-depen-
dent signals and MAPK cascades in tributyltin-induced germline
apoptosis in Caenorhabditis elegans. Chemosphere. 108:231–238.

45. Eberhard, R., L. Stergiou, ., M. O. Hengartner. 2013. Ribosome syn-
thesis and MAPK activity modulate ionizing radiation-induced germ
cell apoptosis in Caenorhabditis elegans. PLoS Genet. 9:e1003943.

46. Hajnal, A., and T. Berset. 2002. The C. elegans MAPK phosphatase
LIP-1 is required for the G(2)/M meiotic arrest of developing oocytes.
EMBO J. 21:4317–4326.

47. Pinto, S. M., and M. O. Hengartner. 2012. Cleaning up the mess: cell
corpse clearance in Caenorhabditis elegans. Curr. Opin. Cell Biol.
24:881–888.

http://refhub.elsevier.com/S0006-3495(15)00589-5/sref19
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref19
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref21
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref21
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref22
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref22
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref23
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref23
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref27
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref27
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref27
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref29
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref29
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref36
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref36
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref38
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref38
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref38
http://www.gromacs.org
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref40
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref40
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref41
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref41
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref42
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref42
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref42
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref46
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref46
http://refhub.elsevier.com/S0006-3495(15)00589-5/sref46


Biophysical Journal 

 

Supporting Material 

 

Emergent Stem Cell Homeostasis in the C. elegans Germline Is 
Revealed by Hybrid Modeling 

Benjamin A. Hall,1,2,* Nir Piterman,3 Alex Hajnal,4 and Jasmin Fisher2,5,* 
1Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, 
University of Cambridge, Cambridge, United Kingdom; 2Microsoft Research Cambridge, Cambridge, 
UK; 3Department of Computer Science, University of Leicester, Leicester, UK; 4Institute of Molecular Life 
Sciences, University of Zurich, Zurich, Switzerland; and 5Department of Biochemistry, University of 
Cambridge, Cambridge, UK 

 



Supplementary information 

Supplementary Figure 1.  

Birth, death and fertilisation over time. Over the 3 week lifetime of the animal 150 oocytes mature 
per arm of the gonad, with roughly one cell maturing per ~23 minutes. Here we observe exhaustion 
of the sperm after 4 weeks, and one cell maturing every ~60 minutes. 

Supplementary Video 1.  

Dynamic lineages. One cell early in the simulation is selected, and its motions and the motions of its 
descendants are plotted as a line. Motions in the mitotic zone are random, whilst outside of the 
region cells move in a single direction along the length of the gonad. Births are indicated by a blue 
sphere in the path, whilst deaths are indicated by a red sphere. 

Supplementary Video 2. 

Dynamics of cell lineages over time. All cells at a single time point are assigned a colour, and from 
then onwards all descendants of these cells retain the same colour.  
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