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Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations
for Ellipsoidal Cells
Marco Stubbe1 and Jan Gimsa1,*
1Chair of Biophysics, University of Rostock, Rostock, Germany
ABSTRACT We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the imped-
ance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells
of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the
Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electro-
rotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric
and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model,
which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights,
and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions
of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects,
most of the limiting cases are identical to—or improved with respect to—the known solutions given by researchers in the field.
The characteristic equations were found to be quite precise (largest deviations typically<5%with respect to the full model) when
tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric prop-
erties of cell suspensions or in the analysis of single cells in microfluidic systems.
INTRODUCTION
Impedance characterization is a common method in chemis-
try, colloid sciences, and biology (1–9). The persistent inter-
est in characterizing suspensions of colloidal objects,
biological cells, or tissues (10–12) calls for intuitive models
and characteristic equations. Generally, the geometric and
electric structures of the samples are too complex for a full
analytical description byMaxwell’s equations. Mixing equa-
tions allow for deducing the effective properties of the sus-
pended objects from the impedance properties of the
suspension. In his treatise, Maxwell (13) derived a first
expression for the static resistance of a dilute suspension of
shelled spheres. Wagner (14) introduced complex specific
conductivities into Maxwell’s theory and slightly simplified
Maxwell’s mixing equation using a Taylor-series develop-
ment in the particle concentration around zero concentration.
Alternatively, the polarization effects governing the imped-
ance properties can be modeled by numerical methods (15–
17); however, the tremendous geometrical differences of
the samples (mm-range), cell bodies (up to tens of mm), sub-
cellular structures (mm- to nm-range), and the thickness of
biological membranes (nm-range) call for a high number of
mesh-elements and result in long computational times.

Resistor-capacitor (RC) networks are an ideal start-point
to describe the impedance and the electric potential distribu-
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tions of structured biological systems. In the 1920s of the
last century, equivalent circuit diagrams had already been
developed for the impedance of blood (18,19). Networks
of RC-pairs, i.e., parallel circuits of a resistor and a capac-
itor, can be considered a crude version of a numerical
description of the passive electric properties of biological
material. Usually, the precision of the models correlates to
the number of elements used. Special models use a limited
number of elements, e.g., in cubic arrangements of RC-pairs
(3,4,20–24). Even though the models may allow for a qual-
itatively good description of experimental impedance data,
they are usually too crude to allow for the extraction of
the electric parameters of particle, cell, or tissue structures.

It was to the merit of H. P. Schwan to insist on the intro-
duction of the media parameters into the RC-models to
allow for the extraction of physiologically relevant proper-
ties such as cytoplasmic conductivity or membrane capaci-
tance (25). His model was derived from a simplified
analytical solution of Laplace’s equation for a spherical
cell model (20,26). It was also H. P. Schwan who proposed
the search for passive RC-models for AC-electrokinetic ef-
fects such as the dielectrophoresis and electrorotation of
cells (H.P. Schwan (deceased), University of Pennsylvania,
personal communication, 1985). A first qualitatively correct
RC-model unifying the impedance of cell suspensions, the
induced transmembrane potential, dielectrophoresis, and
electrorotation was developed by us in 1998 (27).

Neglecting magnetic properties, it started from RC-pairs
describing any volume element of a homogeneous, isotropic
http://dx.doi.org/10.1016/j.bpj.2015.06.021
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medium. The resistor and capacitor values, R and C, of the
(e.g., cubical) volume element are given by a geometry fac-
tor and the complex specific conductivity,

s� ¼ sþ juε0εr; (1)

where j, ε0, and u stand for (�1)0.5, vacuum permittivity,
and circular frequency, respectively. The values εr and s
are the relative permittivity and the specific direct current
(DC)-conductivity of the medium, respectively. Here and
in the following, complex parameters are designated by an
asterisk.

Besides the correspondence of RC-pairs to the dispersion
relation (Eq. 1) (5,6,27,28), the success of the RC-models to
describe suspensions of cells (6,18,20,29) is based on the
fact that the field inside a spherical homogeneous body is
homogeneous and constant. This also applies to the so-
called Maxwellian equivalent body of spherical objects
with confocal shells (13). The Maxwellian equivalent
body is a hypothetical homogeneous body showing the
same polarization as the shelled object at a given frequency.
Moreover, for a multishell spherical object the effective
fields inside the spherical boundaries of every shell (30)
are homogeneous and constant. Maxwell’s idea also applies
to ellipsoidal objects (31–33) when all media in the model
are described by complex isotropic or even anisotropic prop-
erties (34–38).

The properties of Maxwell’s equivalent body are the
result of the structure of Laplace’s equation in combination
with the used geometries (13,33). Generally, the Laplace
equation can be analytically solved for confocal surfaces
of the second degree. Naturally, only closed, i.e., ellipsoidal,
surfaces are of interest to describe the shapes of particles
and biological cells. Depending on the problem, either po-
tential or field distributions are considered to derive, e.g.,
the induced transmembrane potential or the dipole moment.
It is especially simple to obtain these distributions for spher-
ical objects or for an external field orientation in parallel to
one of the principal axes of a spheroidal or ellipsoidal object
(3,39,40). For the general orientation, the distributions of
three orthogonal field components can be obtained by sum-
ming up their induced transmembrane potential components
(41–43) or by a linear superposition of the induced dipole
moment components (28). For the latter, the effective field
for the whole object can be calculated from the frequency-
dependent potentials at the three poles. These potentials
represent the three constant field contributions inside the
Maxwellian equivalent body along the principal axes of
the ellipsoidal object (44). Please note that even though
the resulting fields inside the cytoplasm or the equivalent
body are constant, their orientation is not necessarily in par-
allel to the external field or to one another.

While the classical Laplace solution assumes isotropic
membrane conductivity, the current conduction inside bio-
logical membranes is anisotropic because membranes are
double-lipid layers with integrated ion-channel proteins
(35,36). The ion-channel pores are normally oriented with
respect to the membrane surface, resulting in a membrane
current that mainly flows perpendicular to the surface, i.e.,
for biological membranes, tangential currents inside the
membrane can be neglected. Our axial longitudinal element
(ALE) approach only considers membrane-conductivity
contributions, which are oriented in parallel to the consid-
ered field component. Nevertheless, for the ionic membrane
current, the argument holds that the anisotropic ion conduc-
tivity is correctly described at membrane sites in the vicinity
of the considered pole, i.e., at sites with the highest contri-
butions to the impedance of the suspension.

Another point is the different membrane thickness at the
poles. While the thickness of a biological membrane is con-
stant (~8 nm for protein-rich membranes) closed analytical
Laplace descriptions assume confocal surfaces, resulting in
a thickness variation of the membrane for nonspherical ob-
jects (3,4,33,44,45). Poles of longer axes possess a thinner
membrane-shell than poles with shorter axes. For objects
with extreme axis ratios, e.g., elongated cells, some bacteria
or colloids, the Laplace description may lead to larger
errors.

Generally, field-induced force effects, such as deforma-
tion, orientation, dielectrophoresis, and electrorotation, all
of which can be used to move, separate, trap, or manipulate
objects or cells, are governed by the dipole moment
(8,10,11,17,27,30,44,46,47). To describe the impedance of
a suspension of monodisperse objects by mixing equations,
it is sufficient to know the Clausius-Mossotti factor (CMF)
of the suspended objects, which is the frequency-dependent
term of their dipole moment. Sometimes the different
research communities dealing with polarization effects of
particles or biological cells were not aware of the work
that had already been done in other communities dealing,
e.g., with the impedance of suspensions (6), the physics of
ponderomotive forces (48), dielectrics (49), meteorology
(31), or AC-electrokinetics (50,51).

Simplified expressions for the impedance of suspensions
of ellipsoidal, spheroidal, or spherical cells, or objects with
or without a single shell, are presented in Appendix A. Ap-
pendix B presents expressions for the characteristic fre-
quencies of the suspensions, and Appendix C gives an
overview on references of existing equations. The imped-
ance behavior is analyzed introducing the ALE description
for the CMF into Maxwell’s mixing equation (28,44).
Simplification of the RC schemes obtained from the ALE
approach in certain frequency ranges allows us to easily
obtain analytical solutions for certain features of the imped-
ance spectra of the suspensions, such as plateau levels and
characteristic frequencies.

Our equations can be used to differentiate variously
shaped or oriented cells or colloids with differing electric
properties in suspensions, as well as in single-cell analysis
in microfluidic systems, e.g., by dielectrophoresis-activated
Biophysical Journal 109(2) 194–208
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cell sorting, etc. (12,52–54). They may also describe the po-
larization of atmospheric dust particles by light (31). We
think that the limiting cases of the equations, describing
the limiting ratios of the relative polarizabilities of the
external medium and the objects may be of technological
relevance, e.g., for particles or droplets in gas or air streams
(see air/fuel ratio), for particles in waste gases, or for gas
bubbles in liquids (44,55,56).
MATERIALS AND METHODS

General idea

Usually, the Laplace equation is solved for a given geometry assuming

boundary conditions at the interfaces containing the actual electric proper-

ties of the media (3,5,29,30). Here, we separate the geometric and electric

problems using the limiting case of the Laplace solution for an ellipsoidal

object of very low polarizability (vacuum) surrounded by a highly polariz-

able medium. For such an object the potentials induced by the external field

at the three poles would be at maximum and solely determined by the ob-

ject’s geometry. For a single-shell cell model, the actual potentials at the in-

terfaces are determined by the electric properties of cytoplasm, membrane,

and external medium as well as the field frequency. In our model, these

three media form voltage-divider elements oriented along the three prin-

cipal axes. The maximum possible pole-potentials depend on the length

of the external medium elements. We designated the distances from the cen-

ter of the ellipsoidal object of the three points at which the external medium

elements grip the external potential influential radii (28). The three influen-

tial radii are related to the three depolarizing factors of an ellipsoidal body

(44,57–60).

We define the orthonormal coordinate systems (x, y, z) with x, y, and z

being oriented along the principal semiaxes a, b, and c of the ellipsoidal ob-

ject. Along semiaxis a the influential radius is

ainf ¼ a

1� na
; (2)

for the depolarizing factor na, and so on.

For a biological cell with a nonconductive membrane the maximum po-

tentials at the three poles occurring for a vacuum object would be ap-

proached at low field frequencies. In this case, the potential at the pole of

semiaxis a is 0
@ ainf

0
0

1
A ~E ¼

0
@ ainf

0
0

1
A
0
@ Ea

Eb

Ec

1
A; (3)

i.e., the potential at the site of the pole in the absence of the object is

increased by the maximum amplification factor ainf/a (32). Please note

that in the following all components of Eq. 3, as well as the semiaxes a,

b, and c of the objects and variables derived thereof, e.g., xa, xb, and xc
(see Eq. 7), are considered as scalar components.
The mixing equation for suspensions

In chapter IX of his treatise, Maxwell derived an expression for the effective

DC-resistance of ‘‘.a hollow sphere having a nucleus resistance k1 sur-

rounded by a shell of resistance k2’’ (13). The effective resistance is that

of a uniform homogeneous sphere of the radius of the outer surface, i.e.,

of Maxwell’s equivalent sphere. The fields inside a homogeneous sphere

as well as inside the equivalent sphere of a shelled confocal object are ho-

mogeneous and constant. Maxwell derived an expression (see Eq. 4) for the
Biophysical Journal 109(2) 194–208
static resistance of a dilute suspension of spherical objects using specific re-

sistances of the media.

Substituting the specific resistances by specific complex conductivities

(for simplicity designated ‘‘conductivity’’ in the following) for alternating

currents, the well-known notation of the Maxwell-Wagner mixing equation

can be obtained (14):

s�
S � s�

e

s�
S þ 2s�

e

¼ p
s�
p � s�

e

s�
p þ 2s�

e

: (4)

The indices S, e, and p refer to the whole suspension, the external medium,

and the effective particle conductivities, respectively. Both, the left- and

right terms of Eq. 4 resemble the structure of the CMF for a spherical ob-

ject. The particle volume fraction p at the right term weighs the contribu-

tion of the particle-polarizabilities with respect to the polarizability of a

larger suspension sphere (left term) containing a number of these objects

(compare to Maxwell (13) and Wagner (14)). For spherical objects, the

mixing equation (Eq. 4) is valid up to a maximum volume fraction of

p ¼ 10%.

In a suspension, the averaged conductivity is determined by a linear su-

perposition of the contributions of each ellipsoidal object. For randomly

oriented three axial objects, the three different CMFs along the three prin-

cipal axes are evenly distributed in space. Therefore, each of the CMFs

along the three axes contributes to the averaged conductivity of the suspen-

sion by one-third (3,4,61,62). The CMFs can be introduced for the right

term of Eq. 4 (3,62),

3
�
s�
S � s�

e

�
s�
S þ 2s�

e

¼ p
1

3

X
dir¼ a;b;c

CMF�
dir; (5)

where dir stands for the semiaxes a, b, or c oriented in the field direction.

Please note the factor 3 in the left term. It stems from our CMF-definition,
which conserves the volume term and can be easier expanded to nonspher-

ical objects (28,44).

The CMF for a homogeneous (Maxwellian equivalent-) ellipsoid in a di-

rection can be expressed using fields or the potentials induced at the poles of

the object, e.g., Ja* at the membrane surface at pole a (for details, see

Gimsa and Wachner (28) and Gimsa et al. (33)),

CMF�
a ¼ 1

na

�
Ea � E�

loc;a

Ea

�
¼ 1

na

�
J0;a �J�

a

J0;a

�
; (6)

where J0,a is the undisturbed potential at the site of the pole a in the

absence of the object, i.e., E�
loc;a ¼ J�

a=a and Ea ¼ J0;a=a reflect the effec-
tive local field of the object and the external field strength, respectively. All

above potentials refer to a potential of 0 V at the symmetry planes of the

object without restriction in generality (Fig. 1 B).
ALE approach

We use our approach (28,44) to derive the potentials in Eq. 6 for single-shell

ellipsoidal objects (Fig. 1 A). In short: chains of three RC-pairs for the in-

ternal (i) and external (e) media and the membrane (m) form potential di-

viders along each principle semiaxis (Fig. 1 B). Their parameters are

determined by the media properties (Eq. 1) and their geometries defined

by a cross-sectional area A and a length. The value A is arbitrarily small,

and equal and constant along each principal semiaxis.

The value Jinf,a is the undisturbed potential at the ainf distance from the

symmetry plane. It is the maximum potential that occurs at pole a of an ob-

ject with a very low effective polarizability, e.g., an equivalent vacuum

body or a biological cell at low frequency. Jinf,a can be considered as

the input from the separated geometric problem of the Laplace solution.

It allows us to define the length of the external medium element forming
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the external RC-pair of the voltage divider along axis a (Fig. 1 B). Its rela-

tive length is xa:

xa ¼ ainf
a

� 1: (7)

For randomly oriented three-axial objects, we average the three x-factors

along the main axes:
x ¼ xa þ xb þ xc

3
: (8)

Please note that this expression (Eq. 8) is the first of a set of mixed terms

introduced for the simplification of the equations given in the Appendices.
For the special case of a spherical object, we obtain x ¼
xa ¼ xb ¼ xc ¼ 0:5. The impedances of the RC-pairs of the external and in-

ternal media along axis a are Z�
e;a ¼ ðainf � aÞ=ðA,s�eÞ ¼ a,xa=ðA,s�eÞ and

Z�
i;a ¼ a=ðA,s�i Þ. The complex conductivities of the media are defined by

Eq. 1. The electric properties of the membrane can be described by

Z�
m ¼ 1=ðA,g�mÞ. The complex area-specific membrane conductance of

the membrane is gm* ¼ gm þ juCm, with Cm and gm being the sectoral ca-

pacity and the area-specific membrane conductance. The use of area-spe-

cific terms for the negligibly thin membrane avoids uncertainties in the

definition of the membrane thickness. Given by the low conductance of bio-

logical membranes, i.e., the specific membrane conductivity is <1 mS/m

(8,63) and the area-specific membrane conductance is of 1–100 S/m2

(5,8), it is usually justified to assume that gm ¼ 0 Sm�2.
CMF in the ALE model

Expressing the potentials in Eq. 6 by the voltage-divider properties of the

ALE scheme in Fig. 1 B leads to (28)

CMF�
a ¼ 1þ xa

xa

 
1� Z�

i;a þ Z�
m;a

Z�
i;a þ Z�

m;a þ Z�
e;a

ð1þ xaÞ
!
: (9)
FIGURE 1 (A) Tilted top-side view sketching the shape relations of three

spheroidal objects of the samevolumewith their symmetry axes c being verti-

cally oriented. (Left and right top, and right bottom) Prolate, oblate, and spher-

ical objects with axis ratios a/b/c of 1:1:5, 5:5:1, and 1:1:1, respectively (see

Table 1). (B) Sketchof the chain of volumeelements for theprinciple semiaxis

a of an ellipsoidal object. The labels A, d, a, and ainf are the cross-sectional

area, membrane thickness, equatorial radius, and the influential radius in

the a direction, respectively. The internal and external media and the mem-

brane are marked by i, e, and m. The value Ea is the strength of the external

field (component), which is oriented in the a direction. It induces a reference

potential of 0Vat the symmetry plane andJa* at pole a. In the absence of the

object,Ja* changes toJa* ¼ a E and the potential at the ainf distance from

the symmetry plane isJinf,a¼ ainfE. The RC-chain describes the behavior of

the potentials at the interfaces of internal, membrane, and external media.
The mixing equation

Combining the left term of Eq. 5 with Eq. 9 results in

3
�
s�
S � s�

e

�
s�
S þ 2s�

e

¼ p
1

3

X
dir¼ a;b;c

 
1þ xdir

xdir 
1� Z�

i;dir þ Z�
m;dir

Z�
i;dir þ Z�

m;dir þ Z�
e;dir

ð1þ xdirÞ
!!

:

(10)

Derivations

The softwares Maple, Version 12 (Maplesoft, Waterloo, ON, Canada) and

SigmaPlot, Version 11 (Systat Software, San Jose, CA) were used for model

considerations, the derivation of simplified equations, and the generation

and plotting of theoretical curves. The characteristic equations presented

in the Appendices were derived from Eq. 10, starting from the full ALE

model (Fig. 1 B) or, alternatively after simplification of the RC-pair chain

for certain frequency ranges (28). These before-the-event simplifications

reduced the complexity of the derivation and ad hoc, led to simpler expres-

sions. For further information, please see the Supporting Material.
Model parameters

We validated our model for differently shaped objects. As exemplary shapes,

we used oblate, prolate, and spherical single-shell objects of the same volume

(Fig. 1 A). Furthermore, as a biological example for a single-shell ellipsoid, a

three-axial chicken red blood-cell (CRBC)modelwas used. For theCRBC, the

dimensions of the axes correspond to experimental values given byMaswiwat

et al. (42). All axis ratios and electric properties are summarized in Table 1.
RESULTS AND DISCUSSION

Comparison of the ALE and Laplace models,
parameter definitions

We compared our ALE approach with the original Maxwell-
Wagner model. The results are shown in Figs. 2 and 3 for a
TABLE 1 Axis lengths of single-shell model objects of

different shapes and electric media properties

Description

Semiaxis

a/mm

Semiaxis

b/mm

Semiaxis

c/mm

Model Geometry

Sphere 6.66 6.66 6.66

Oblate spheroid (ratio 5:5:1) 11.39 11.39 2.28

Prolate spheroid (ratio 1:1:5) 3.89 3.89 19.47

Three axial ellipsoid (CRBC) 6.66 4.17 1.43

Volume fraction of objects p ¼ 0.1

Media properties

Internal conductivity si ¼ 0.5 Sm�1

Internal permittivity εi ¼ 50 ε0

External conductivities se ¼ 0.1 Sm�1 or

se ¼ 1.3 Sm�1

External permittivity εe ¼ 80 ε0

Area-specific membrane capacitance Cm ¼ 0.01 Fm
�2

Area-specific membrane conductance gm ¼ 0 Sm�2 or

gm s 0 Sm�2

Biophysical Journal 109(2) 194–208



FIGURE 2 Real and imaginary parts of the complex specific impedance

for a suspension of single-shell spheres obtained from the Maxwell-Wagner

mixing equation (Eq. 5) solved with the ALEmodel (solid line) and the Lap-

lace model (solid circles). The Cole-Cole plot (top-left) merges the fre-

quency-dependent plots of the real (lower-left) and imaginary (top-right)

parts. The three plateaus in the real part (vertical dashed lines) correspond

to lowabsolutemagnitudes in the imaginary parts. The inflection points (solid

lines) correspond to peaks in the imaginary part at the two characteristic fre-

quencies (dotted lines) of the membrane (b1) and the bulk conductivity (b2)

dispersions. For parameters, see Table 1 for se¼ 0.1 Sm�1 and gm¼ 0 Sm�2.

FIGURE 3 Frequency dependencies of the relative permittivity (A) and

the conductivity (B) for the parameters used in Fig. 2. Two dispersion pro-

cesses (b1 and b2) and characteristic plateaus for DC (εr,DC, sDC) and infi-

nitely high frequencies (εN, sN) as well as an intermediate plateau (εr,b1_2,

sb1_2) are clearly visible in (A) and (B).
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suspension of spherical cells (for parameters, see Table 1).
The model differences in the real and imaginary parts of
the impedance (Fig. 2) as well as between the conductivities
and permittivities (Fig. 3), are negligible.

Figs. 2 and 3 show two significant dispersion processes
(b1 and b2) that are generally based on the fact that the
capacitive membrane and bulk conductivity contributions
of certain relaxation processes that follow the external field
at lower frequencies disperse at higher ones. Consequently,
the permittivity of cell suspensions drops over some fre-
quency decades by orders of magnitude while the conductiv-
ity increases (Fig. 3). For a classification of the contributing
processes, two different approaches exist: the dispersions
were sorted according to their physical nature, e.g., as
Maxwell-Wagner and Debye dispersions, or according to
the frequency range in which they occur (27).
Nonspherical objects

Simplified equations for characteristic plateaus of the con-
ductivities and permittivities of a suspension of randomly
oriented single-shell ellipsoidal objects are shown in Appen-
dix A1. For further simplifications of the equations, mixed
terms were introduced for the objects’ geometries that
Biophysical Journal 109(2) 194–208
simplify the description of the superposition of the ellip-
soidal object orientations (see Appendix A2; compare to
Eq. 8). Similarly, mixing ratios for the conductivities and
permittivities were introduced that are related to the geomet-
rical mixed terms (see Appendix A2). For objects of rota-
tional symmetry (spheroids), the mixing ratios can further
be simplified assuming an approximation function for the
influential radii (41,42).

It is known that objects can be oriented by electric fields
(42,44,64) or fluid motion (65). In the presence of a linear
AC field, nonspherical objects may orient with a certain
axis into the direction of the field depending on the
frequency (44). The axis with the highest induced
dipole moment is frequency dependent. In linear fields,
it is oriented in the field direction. For objects oriented
with the same axis in parallel to the electric field, the
equations of Appendix A1, reduce to the equations of
Appendix A3.

Fig. 4 shows the results for the real and imaginary parts of
the specific complex impedance as well as for the conduc-
tivity and relative permittivity for different orientations of
the main axes of CRBCs at two external conductivities. It



FIGURE 4 Comparison of the electric properties of suspensions of CRBCs oriented in the a, b, or c direction with gm ¼ 0 Sm�2. The external media

conductivity was se ¼ 0.1 Sm�1 (A1 and B1) and se ¼ 1.3 Sm�1 (A2 and B2). For further parameters, see Table 1. Please note that the function plots touch

the ordinates to which they refer.
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can be seen that the different axes lengths and corresponding
x-values can be distinguished at low and high external con-
ductivities, especially in the lower frequency range. The real
and imaginary parts of the impedance are showing differ-
ences in the frequency range up to 100 MHz. Above 100
MHz, different orientations of the objects are hard to distin-
guish. The same applies to the permittivity. In the conductiv-
ity case, the object orientations can be distinguished over the
whole frequency range.

For simplicity, we neglected the membrane conductivity
in the above considerations. In the following, we will check
the influence of the membrane conductance on the specific
complex impedance, conductivity, and relative permittivity
for the CRBC geometry.

As can be seen in Fig. 5, the membrane-conductance influ-
ence for an external conductivity>0.1 Sm�1 is almost negli-
gible at <1000 Sm�2, a value above standard biological
parameters. Nevertheless, membrane conductivities above
this level only reduce the dispersion strength of the mem-
brane (b1) dispersion, leaving the b2 dispersion unchanged.
This is a result of the very small volume contribution of the
membrane to the overall cell volume. Please note that for
very small objects such as liposomes or viruses, the mem-
brane volume fraction is higher and may no longer be ne-
glected at frequencies above the membrane dispersion (66).
Spheres and oblate and prolate spheroids

For a sphere with x ¼ 0.5 along each axis, the equations
of Appendix A3 result in the equations of Appendix A4
and A5 for an area-specific membrane conductance of
gm ¼ 0 Sm�2 and gm s 0 Sm�2, respectively. Originally,
Pauly and Schwan (7) solved the full mixture equations
for spherical single-shell objects by hand, throwing out
small terms, which led to the famous Pauly-Schwan ex-
pressions. Later, Foster and Schwan (5) used a Pade
approximation, keeping terms to first-order in the mem-
brane-thickness/cell-diameter ratio (K.R. Foster, University
of Pennsylvania, personal communication, 2014). In the
ALE model, the membrane thickness is fully neglected
and area-specific properties provide transition conditions
between the internal and external bulks.

Our equations for suspensions of spherical single-shell
objects (see Appendix A4 and A5) include the special cases
for the conductivity and permittivity already provided by
Foster and Schwan (5), and Schwan (6), proving the feasi-
bility of the ALE approach.

Fig. 6 compares impedance spectra for spherical as well
as oblate and prolate spheroidal objects. As can be seen in
Fig. 6, A1 and A2, the real and imaginary parts of the spe-
cific impedance of a suspension do not very sensitively
depend on the shape of randomly oriented oblate or prolate
single-shell spheroids or single-shell spheres. Interestingly,
both deviations from the spherical shape lead to concordant
changes in the specific impedance. Whether the deviation
from the spherical shape leads to an increase or decrease
in the impedance depends on frequency and external con-
ductivity. For a given axis ratio, impedance changes are
larger for deviations toward the oblate than the prolate
shape.
Biophysical Journal 109(2) 194–208



FIGURE 5 Comparison of the electric properties of suspensions of CRBCs of random orientation with membrane conductances of gm ¼ 0, 125, 1000, and

5000 Sm�2. The external medium conductivity was se ¼ 0.1 Sm�1 (A1 and B1) or se ¼ 1.3 Sm�1 (A2 and B2). For further parameters, see Table 1.
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Fig. 6, B1 and B2, shows that relative permittivities and
conductivities are more sensitive to shape changes. While a
transition from the spherical to an oblate shape results in a
change of the low-frequency plateaus of the specific imped-
ance changes by<10%, relative permittivity and conductivity
are changed by >50 and 10%, respectively. At frequencies
FIGURE 6 Comparison of suspensions of single-shell spheres with randomly

jects had the same volume and volume fraction. The external medium conducti

further parameters, see Table 1.
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above themembrane dispersion, differences in the conductiv-
ities are more pronounced than in the relative permittivities.

As suggested in Fig. 4 for the general ellipsoidal shape,
axis-length variations in field direction can be sensitively
detected. In Fig. 7, different orientations of oblate and pro-
late objects are compared with spherical objects.
oriented oblate and prolate single-shell spheroids for gm ¼ 0 Sm�2. All ob-

vity was se ¼ 0.1 Sm�1 (A1 and B1) and se ¼ 1.3 Sm�1 (A2 and B2). For



FIGURE 7 Comparison of the electric properties of suspensions of single-shell spheres with oriented oblate and prolate single-shell spheroids for gm ¼
0 Sm�2. The external medium conductivity was se ¼ 0.1 Sm�1 (A1 and B1) and se ¼ 1.3 Sm�1 (A2 and B2). For further parameters, see Table1.
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As can be seen in Fig. 7, A1 and A2, the specific
impedance reflects the shape of oblate and prolate spher-
oids more sensitively when the objects are oriented
(compare to Fig. 6, A1 and A2). Clearly, oblate and
prolate spheroids lead to increased impedances relative
to spheres when their longer axes are oriented perpen-
dicular to the field direction. Qualitatively, an increase
or decrease in the impedance induced by a shape devia-
tion of the oriented objects does not depend on fre-
quency and external conductivity. For a given object
orientation, this effect is also independent from the
effective impedance of the object relative to that of the
external medium (compare b1_2 plateaus in Fig. 7, where
the internal conductivity is higher (Fig. 7 A1) or lower
(Fig. 7 A2) than that of the external medium). For a given
shape, the two orientations determine limits for the
impedance obtained for incomplete or random orientations
(Fig. 6).

Relative permittivities are more sensitive to shape
changes than the specific impedance, as can be seen from
the spreading of the spectra in Fig. 7, B1 and B2. The
value εr,DC is increased by>50% when moving from prolate
to oblate objects with their symmetry axes oriented in the
field direction. Nevertheless, at first glance, a systematics
in the permittivity change is not as intuitive as in Fig. 6,
B1 and B2.

The sensitivities of sDC and specific impedance are com-
parable. Clearly, the conductivity is increasing with the
length of the axis oriented in the field direction below the
b2-dispersion (compare to Table 1 and Fig. 1 A). Above
the b2-dispersion, the systematics is reversed (Fig. 7 B1).
This suggests conductivity to be the ideal parameter for
differentiating the shapes of oriented objects.

In summary, Figs. 6 and 7 suggest that a prerequisite for
the experimental differentiation of different object shapes
will require largely monodisperse suspensions, especially
for the random orientation. It would be of strong advan-
tage, if electric measurements could be conducted on the
same suspension for different object orientations, e.g.,
induced by AC fields of certain frequencies. Such an
approach would be similar to electrooptic measurements,
which combine the electrically induced orientation of ob-
jects with the detection of changes in the turbidity of the
suspension (64). Even more sensitive might be the detec-
tion of single objects, e.g., in microfluidic impedance
chambers (12,52–54).
Complex plot summaries

Fig. 8 summarizes the spectra of CRBC suspensions (Figs. 4
and 5) in complex plots of the specific impedance in depen-
dence on the cell orientation (Fig. 8 A) and membrane
conductance of the randomly oriented CRBCs (Fig. 8 B).
Comparison clearly shows a higher resolution for both pa-
rameters at the low external conductivity, as already dis-
cussed in relation to Figs. 4 and 5.

Fig. 9 summarizes the spectra of Figs. 6 and 7 for
suspensions of single-shell spheroids with different axis
ratios (Fig. 1 A; Table 1). The specific impedances are
considered for objects, which are randomly oriented
(Fig. 9 A) or pointing in the field direction with certain
axes (Fig. 9 B).
Biophysical Journal 109(2) 194–208



FIGURE 8 Complex plots of the specific impedances for oriented CRBCs

with zeromembrane conductance (A; compare to Fig. 4) as well as randomly

oriented CRBCs of different specific membrane conductances (B; gm ¼ 0,

125, 1000, and 5000 Sm�2; compare to Fig. 5). The spectra were calculated

for se ¼ 0.1 Sm�1 and se ¼ 1.3 Sm�1 (small semicircles in the top-left cor-

ners ofA andB designated by ‘‘1�’’). For other parameters, see Table 1. For a

better comparabilitywith the largerse¼ 0.1 Sm�1 plots,se¼ 1.3 Sm�1 plots

were upscaled by a factor of 10 and designated by ‘‘10�’’. For reference, the

random orientation for gm ¼ 0 Sm�2 (solid line) is included in (A) and (B).
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Comparison of the ALE approach with other
model approaches

Here we show that the same CMF expressions can be em-
ployed in impedance and AC-electrokinetic models. A
FIGURE 9 Complex plots of the specific impedances of suspensions of random

compare to Fig. 7A) single-shell spheroids of oblate, spherical, and prolate shapes

andB1) orse¼ 1.3Sm�1 (A2 andB2). For further parameters, seeTable 1. (Please c

Biophysical Journal 109(2) 194–208
closed Laplace solution for a single-shell object of the gen-
eral ellipsoidal shape requires two confocal interfaces (for
internal medium, membrane; for membrane, external me-
dium) to describe the membrane. The assumption of the cor-
rect thickness of the membrane shell at each of the poles of
the three principal semiaxes of nonspherical objects would
lead to nonconfocal membrane surfaces, hindering a consis-
tent Laplace solution. In the classical derivations of the
CMF of single-shell ellipsoidal objects, exact depolarizing
factors are introduced for the inner- and outer-confocal
membrane-shell interfaces (3,31,40).

A simple way to partly correct for the nonconstant mem-
brane thickness of confocal models is the combination of
three (or two for the rotational symmetry) different Laplace
solutions for three different ellipsoidal models (31). Each of
the models should exhibit the same correct membrane thick-
ness at the poles of the principal axis, which is oriented in
parallel to the considered field component. For multishell
spheroidal objects, a solution for the simultaneous thickness
correction for the multitude of shells has been given by So-
kirko (67). A way to correct for the nonconstant membrane
thickness may be the assumption of anisotropic membrane
properties (Jones (51); see also Simeonova and Gimsa
(34) and Sukhorukov et al. (36)).

Generally, for biological cells the assumption of the same
depolarizing factors for the inner and outer ellipsoids, which
form the twomembrane interfaces, is justified because of their
negligible geometry differences. While the model of Asami
et al. (3) still contains the small differencebetween thevolumes
of the two ellipsoids, this difference is neglected in the ALE
approach by the introduction of area-specific membrane pa-
rameters. The combination of three different Laplace solutions
for three geometries is inherent to the ALE approach. This al-
lows for the assumption of the same membrane properties at
ly oriented (A1 and A2; compare to Fig. 6 A) as well as oriented (B1 and B2;

and gm¼ 0 Sm�2. The external medium conductivity was se¼ 0.1 Sm�1 (A1

ompare the factor-of-10 scalingbetween the abscissas ofA andBwithFig. 8.)
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the poles for each field component. Naturally, the highest
contribution of each field component to the impedance of the
suspension stems from the respective poles, especially below
and in the frequency range of membrane dispersion (28).
Precision of the ALE model

For the parameters given in Table 1, the full ALE approach
(Eqs. 9 and 10) shows no differences with the spectra calcu-
lated with the spherical models of Schwan (Foster and
Schwan (5)), as well as with the ellipsoidal models of Asami
et al. (3) and Bohren and Huffman (31) within the numerical
accuracy (compare to Fig. 3).

To explore the limits of the ALE model, we considered a
suspension of single-shell spheres with a very high area-spe-
cific shell conductance of 6.25 � 1016 Sm�2, which was
calculated from the specific conductivity of gold of 5 � 107

Sm�1 assuming a membrane-shell thickness of 8 nm. The
ALE results were compared with the classical Laplace solu-
tion at se ¼ 0.1 Sm�1 (see Table 1 for other parameters).
For the three plateaus (DC, b1_2, and infinitely high fre-
quencies), respective percentage differences ððvalueALE�
valueLaplaceÞ=valueLaplaceÞ of �12, 0, and �7% (conductivity
spectra), aswell as�19, 0, and 0% (permittivity spectra)were
found. We suppose that the main reason for the differences
stem from the Cartesian anisotropy in the membrane proper-
ties inherent to the ALE model, which excludes membrane
currents tangentially oriented to the considered field compo-
nent. As a result, the current conduction through an ALE sus-
pension as well as its conductivity and permittivity are
slightly reduced. Nevertheless, an elaborate investigation of
TABLE C1 Reference chart for characteristic equations of paramete

random and axial orientations

Description s* ε* sDC sP sN εD

Single Shell

Ellipsoids

Oriented — (71) new new new ne

Random — (3) n.e. new new new ne

Spheroids

Oriented — — new new new ne

Random — — new new new ne

Spheres — — (5) new new ne

Homogeneous

Ellipsoids

Oriented — (4) new new new ne

Random — (4) new new new ne

Spheroids

Oriented (61) (61) new new new ne

Random — — new new new ne

Spheres (14) (14) (5) new new ne

n.e., no explicit expression given.
this relation is beyond the scope of this article, especially
because conductances of the order of gold are unrealistic
for biological membranes. Whether the actual properties of
biological membranes with protein and aqueous pores being
normally oriented to themembrane surface are even better re-
flected in the ALE model, remains to be elucidated.

There is at least one further problem to be considered. It
concerns Maxwell’s requirement that the concentration of
the objects has to be low enough to avoid mutual electrical
interactions of the objects. It is known that the potential far
from spherical objects vanishes, which is not necessarily the
case for spheroidal or ellipsoidal objects (68). Accordingly,
Maxwell’s requirement cannot simply be assumed as ful-
filled for nonspherical objects. For simplicity, we neglected
this problem, based on the fact that the shape of biological
objects is close to spherical. Nevertheless, especially for
the random orientation, it is uncertain whether a 10% vol-
ume fraction will be low enough to fulfill Maxwell’s condi-
tion. The investigation of the shape and orientation
dependencies on the limiting concentrations is beyond the
scope of this article and will need separate attention. We
are not aware of any work on such limits.
CONCLUSIONS

Many of the characteristic or limiting equations given in
Appendices A and B for the impedance of suspensions of
ellipsoidal, spheroidal, and spherical objects are given
here for the first time, to our knowledge. A summary is
given in Table C1. It is amusing that the derivation of
characteristic equations using the ALE approach applies
rs of suspensions of single-shell and homogeneous objects for

C εP εN tc1 tc2 sDC�N εDC�N

w new new new new — —

w new new — — — —

w new new new new — —

w new new — — — —

w new (5) (5,33) (72) — (5)

w new new — new — —

w new new — — — —

w new new — new — —

w new new — — — —

w new (5) — (72) (5) (5)
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the philosophy of ancient analog computing: to separate
time constants, certain electric elements of the complete
RC-chain model are neglected in the considered frequency
range. We think that this philosophy is closer to the electric
character of the problem, and facilitates the identification of
negligible terms with respect to, for example, Taylor or Pade
approximations. For an illustration, please compare the dif-
ferences in the simplified equations derived in Gimsa et al.
(69) with those in Gimsa and Wachner (28) and see discus-
sion in Gimsa et al. (33). Naturally, our model provides all
solutions for suspensions of homogeneous objects. In this
case, the RC-chain is reduced to two RC-pairs for the inter-
nal and external media and the described object is identical
to Maxwell’s equivalent body (see Appendices A and B and
Maxwell (13) and Gimsa et al. (33)).
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APPENDIX A: CONDUCTIVITY AND PERMITTIVITY
PLATEAUS

Here, we present collections of characteristic equations of conductivity and

permittivity plateaus for suspensions of randomly oriented, axially oriented

single-shell spheroidal and three axial ellipsoidal objects as well as spheres

with andwithoutmembrane conductance. Plateau equationswere derived for

the static case (index DC), the plateau beyond membrane dispersion (index

b1_2), and the plateau at infinitely high frequency (index N, Figs. 2 and 3).

Below, we introduce the mixed terms x, x, and xabc as well as s and ε for

randomly oriented objects.
1. Characteristic equations of conductivity and
permittivity plateaus for a suspension of
randomly oriented single-shell spheroidal and
three-axial ellipsoidal objects with zero
membrane conductance
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2. Mixed terms for randomly oriented
nonspherical objects

Please note that further simplification is possible for the spheroidal shape

with xa ¼ xb.

xabc ¼ xaxbxc; x ¼ ðxa þ xb þ xcÞ
3

x ¼ ðxaxb þ xbxc þ xcxaÞ
3

¼ xabc

3

�
1

xa
þ 1

xb
þ 1

xc

�
(A7)

s ¼ ðxasi þ seÞðxbsi þ seÞðxcsi þ seÞ (A8)
ε ¼ ðxaεi þ εeÞðxbεi þ εeÞðxcεi þ εeÞ (A9)
3. Characteristic equations of conductivity and
permittivity plateaus for a suspension of axially
oriented single-shell spheroidal and three-axial
ellipsoidal objects with zero membrane
conductance
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4. Characteristic equations of conductivity and
permittivity plateaus for a suspension of single-
shell spheres with zero membrane conductance
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5. Characteristic equations of conductivity and
permittivity plateaus for a suspension of single-
shell spheres with nonzero membrane
conductance

For gm s 0, the derivations were restricted to the DC plateaus because the

complexity of the obtained expression for the other cases makes their use-

fulness questionable:
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APPENDIX B: TIME CONSTANTS OF MEMBRANE
ANDBULKMEDIAPOLARIZATIONSFOROBJECTS
WITH ZERO MEMBRANE CONDUCTANCE

Membrane dispersion

The following derivations were restricted to oriented and spherical objects,

because the relaxation time is not well defined for suspensions of nonor-

iented objects with orientation-dependent relaxation times. To obtain the
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membrane-time constants, the RC-chain in Fig. 1 B has been reduced to Ri,

Cm, and Re (28) (Eq. 10). The final expressions were obtained by approxi-

mating the Taylor series in p by the first-order term. They were numerically

checked for their correspondence with the full expressions assuming

geometrical and electric parameters relevant for biological cells.

For the membrane-relaxation time tIMP
c1 of suspensions of ellipsoidal (or

spheroidal) single-shell objects oriented with their a axis in the field direc-

tion, we obtain
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with uIMP
c1 ¼ 1=tIMP

c1 being the characteristic circular frequency. For spher-

ical objects with xa ¼ xb ¼ xc ¼ 0.5, Eq. B1 simplifies to (33)0 1
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For the limiting case of p ¼ 0, Eq. B1 reduces to the membrane-time con-

stant of a single cell tc1, � �

tIMP
c1 ðp ¼ 0Þ ¼ tc1 ¼ Cspec

m a
1

si

þ xa

se

; (B3)

which is known from the induced transmembrane potential or the mem-

brane-dispersion peak of spheroidal cells in electrorotation (28). For spher-
ical cells, Eq. B3 is simplified to the well-known equation (5,50,70):

tIMP
c1 ðp ¼ 0Þ ¼ tc1 ¼ Cspec

m r
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þ 1
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�
: (B4)

In contrast to the equation given by Foster and Schwan (5), Eqs. B1 and B2

predict a slight increase of tIMP
c1 for increasing cell fractions. Because of
these differences, we checked that the limiting cases of the time constants

for si >> se, si ¼ se, and si << se correspond for ellipsoidal (left) and for

spherical objects (right):
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1

and tIMP ¼ Cspecr
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c1 m si
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(B7)

For a more detailed discussion, please see Gimsa et al. (33).
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Conductivity dispersion of the bulk media

Beyond themembrane dispersion,Zm contributions can be neglected. For the

bulk media-time constants, the RC-chain in Fig. 1 B can be reduced to Ri,Ci,

Re, and Ce (28). The final expressions were obtained by approximating the

Taylor series in p by the first-order term and numerically checked for param-

eters relevant for biological cells. For suspensions of oriented ellipsoidal (or

spheroidal) single-shell (or homogeneous) objects, we obtain

tIMP
c2 ¼ xaεi þ εe
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For spherical objects, Eq. B8 can be simplified to0 1

tIMP
c2 ¼ εi þ 2εe

si þ 2se

BBB@ 1

1� 3

8
p

ðεi se � εe siÞ
ðεi þ 2εeÞðsi þ 2seÞ

CCCA: (B9)

For oriented ellipsoidal objects and the limiting case of p ¼ 0, Eq. B8 can

further be reduced to
tIMP
c2 ðp ¼ 0Þ ¼ tc2 ¼ xaεi þ εe

xasi þ se

: (B10)

For spherical cells, Eq. B10 reduces to (50,51,67)
tIMP
c2 ðp ¼ 0Þ ¼ tc2 ¼ εi þ 2εe

si þ 2se

: (B11)

The tc2 expressions are already known from electrorotation (28,50,69). For

oriented objects of the general ellipsoidal, spheroidal, and spherical shapes
the limiting conditions si >> se and si << se can be fulfilled assuming

zero conductivity for the lower or, alternatively, infinite conductivity for

the higher parameter. Nevertheless, as can be seen from Eqs. B8–B11 the

relaxation times will become infinitely short (tIMP
c2 ¼ 0) for the assumption

of infinitely high conductivities. From the experimental point of view, the

assumption of se ¼ 0 and si ¼ 0 for the cases si >> se and si << se is

more reasonable. In analogy to the tIMP
c1 considerations, we obtain

tIMP
c2 ¼ ðxaεi þ εeÞ2�

xaðxaεi þ εeÞ þ 1

6
pεeð1þ xaÞ2

�
si

and

tIMP
c2 ¼ ðεi þ 2εeÞ2

2

�
εi þ 2εe

�
1þ 3

4
p

��
si

for si[se;

(B12)

tIMP ¼ ðεiþεeÞ2� � and
c2

ðxaεi þ εeÞð1þ xaÞ�
1

6
pðεi � εeÞð1þ xaÞ2 se

tIMP
c2 ¼ ðεi þ 2εeÞ2

3

�
1� 1

2
p
εi � εe

εi þ 2εe

�
se

for si ¼ se; (B13)
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tIMP ¼ ðxaεi þ εeÞ2� � and
c2

ðxaεi þ εeÞ � 1

6
pεið1þ xaÞ2 se

tIMP
c2 ¼ ðεi þ 2εeÞ2

2

��
1� 3

4
p

�
εi þ 2εe

�
se

for si � se: (B14)

We think that these limiting cases may be of technological relevance (see

Introduction).
APPENDIX C: REFERENCES FOR
CHARACTERISTIC EQUATIONS

Wecollected referenceswith simplified equations as derived in this article, to

the best of our knowledge. Table C1 gives a summary. Nevertheless, in many

cases the authors presented only general derivations for the complex imped-

ance, conductivity, or permittivity of suspensions, and did not give explicit

expressions or characteristic equations for the DC, intermediate (b1_2), and

infinitely high frequencies’ plateaus. In some cases, differences of the DC

and infinitely high frequency plateaus are described (designated by index

DC–N in Table C1), thereby ignoring the b1-membrane dispersion. Espe-

cially in older works, dispersions are discussed in terms of loss angles (61).
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Maple 12 Code and Supporting Methods are available at http://www.
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Maple 12© code 
# derivation of simplified impedance equations for suspensions of ellipsoidal objects based on 
the model of Gimsa and Wachner (27,28) 
 
# Code developed by Dr. Marco Stubbe 
# An RC-model was introduced into Maxwell-Wagners mixing equation based on the axial 
longitudinal element (ALE) model for ellipsoidal single shell models 
 
variables 

# Zi, Ze and Zm are the impedances of the internal and external media as well as the cell 
membrane  
# the indices a, b and c refer to the three principal axes with their lengths of ra, rb and rc 
# xia, xib and xic are the relative influential radii along the semi axes 
# xi is the relative influential radius of the larger sphere 
# omega is the circular frequency 
# A is the cross sectional area of each of the volume elements of the internal, membrane and 
external media. A is arbitrarily small and equal and constant along each principal axis  
# Cm and gm are the sectoral capacity and the area-specific membrane conductance 
# p is the volume fraction of the objects 
 
# clearing internal memory  
> restart; 
 
general simplifications 

> gm:=0:  
 
defining impedances 

# defining the impedances for all media elements 
> Zia:=ra/(A*(si+I*omega*ei)): 
Zea:=xia*ra/(A*(se+I*omega*ee)): Zm:=1/(A*(gm+I*omega*Cm)): 
> Zib:=rb/(A*(si+I*omega*ei)): 
Zeb:=xib*rb/(A*(se+I*omega*ee)): 
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> Zic:=rc/(A*(si+I*omega*ei)): 
Zec:=xic*rc/(A*(se+I*omega*ee)): 
 
Clausius-Mossotti-factor 

# defining the Clausius-Mossotti-factors (CMF) for the semi axes a, b, and c 
 
# simplifications: 
# the CMF can be simplified for different characteristic frequencies, depending on the 
electrical simplifications applied to the complete equivalent circuit (28) 
# e.g. Zm can be neglectet for frequencies beyond membrane dispersion 
# HINT: removing impedance components from the CMF (e.g. by converting these 
impedance components to text) is a very fast and simple method to consider the model 
properties in certain frequency bands 
> CMFa:=(1+xia)/xia*(1-(Zia+Zm)/(Zia+Zm+Zea)*(1+xia)): 
CMFb:=(1+xib)/xib*(1-(Zib+Zm)/(Zib+Zm+Zeb)*(1+xib)): 
CMFc:=(1+xic)/xic*(1-(Zic+Zm)/(Zic+Zm+Zec)*(1+xic)): 
> CMFa:=simplify(CMFa,symbolic): 
CMFb:=simplify(CMFb,symbolic): CMFc:=simplify(CMFc,symbolic): 
# derivation of the CMF for randomly oriented objects from the three semi axis components 
> CMF:=simplify((CMFa+CMFb+CMFc)/3,symbolic): 
 
combing Maxwells mixing equation with the ALE model 

# simplifications: 
> xi:=1/2: # the relative influential radius of the large sphere is 1/2 
> s:=solve((s-(se+I*omega*ee))/(xi/(1+xi)*s+1/(1+xi)* 
(se+I*omega*ee))=p*CMF,s): 
 

expressions for the conductivity and permittivity of the suspension for the DC 
case  
> sigma_low:=collect(simplify(limit(evalc(Re(s)),omega=0), 
symbolic),[p]); 
> epsilon_low:=collect(simplify(limit(evalc(Im(s))/omega, 
omega=0),symbolic),[r,Cm,p]); 

 

expressions for the conductivity and permittivity of the suspension for 
infinitely high frequencies  

# reinitializing variables 
> p:='p': xi:='xi': omega:='omega': gm:='gm': ee:='ee': 
ei:='ei': 
# calculation of conductivity and permittivity 
> sigma_inf:=collect(simplify(limit(evalc(Re(s)),omega 
=infinity),symbolic),[p,xi]); 
> epsilon_inf:=collect(simplify(limit(evalc(Im(s))/omega,omega 
=infinity),symbolic),[r,Cm,xi,p]); 
 
calculating differences between the DC-β1_2, β1_2-∞ and DC-∞ plateaus 
(optional) 



3 
 

# reinitializing variables 
> p:='p': xi:='xi': omega:='omega': gm:='gm': ee:='ee': 
ei:='ei': 
# calculation of conductivity and permittivity 
> sigma_d:=simplify(sigma_inf-sigma_low,symbolic); 
> epsilon_d:=simplify(epsilon_inf-epsilon_low,symbolic); 
 
simplifications of equations (optional) 

# factorization of the equations 
> factor(numer(sigma_d)); factor(denom(sigma_d)); 
> factor(numer(epsilon_d)); factor(denom(epsilon_d)); 
 
assigning values to variables, e.g. for a single shell sphere 

# define physical constants here: 
> e0:=8.854e-12: 
# radii of the semiaxis 
# never use more than three positions after decimal point to avoid erroneous results in the 
calculations of the influential radii 
> ra:=5.000e-6: rb:=4.999e-6: rc:=5.001e-6: 
 

derivations of the relative influential radii of the semi axes of the objects 

# definitions of the semi axis 
> a:=ra:  
> b:=rb:  
> c:=rc:  
> Vabc:=4/3*evalf(Pi)*a*b*c: 
 
> # definition of the Legendre-Integrals of the 1st and 2nd order for determining the 
depolarizing coefficients of the general ellipsoid 
> beta:=(a,b)->b/a: delta:=(a,c)->c/a: 
> LF:=(k,theta) -> Int(1/(sqrt(1-
k^2*(sin(psi)^2))),psi=0..theta): 
> LE:=(k,theta) -> Int((sqrt(1-
k^2*(sin(psi)^2))),psi=0..theta): 
> k:=(beta,delta) -> ((1-beta^2)/(1-delta^2))^(0.5): 
> psi:=(delta) -> arccos(delta): 
 
> # depolarizing coefficients and influential radii in the direction of the semi axis (a,b,c) 
> na:=(beta,delta) -> beta*delta/((1-delta^2)^(0.5)*(1-
beta^2))*(LF(k(beta,delta),psi(delta))-
LE(k(beta,delta),psi(delta))): 
> nb:=(beta,delta) -> - na(beta,delta)+beta*delta/((1-
delta^2)^(0.5)*(beta^2-
delta^2))*(LE(k(beta,delta),psi(delta)))-delta^2/(beta^2-
delta^2): 
> nc:=(beta,delta) -> - beta*delta/((1-delta^2)^(0.5)*(beta^2-
delta^2))*LE(k(beta,delta),psi(delta))+beta^2/(beta^2-
delta^2): 
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> ridr:=(n)->1/(1-n): dr:=(r,n)->(ridr(n)-1)*r: xif:=(n)      
->ridr(n)-1: 
 
> na:=evalf(na(beta(a,b),delta(a,c))); 
nb:=evalf(nb(beta(a,b),delta(a,c))); 
nc:=evalf(nc(beta(a,b),delta(a,c))); n_sum:=evalf(na+nb+nc); 
> xia:=evalf(xif(na)); xib:=evalf(xif(nb)); 
xic:=evalf(xif(nc)); xi_sum:=evalf(xia+xib+xic); 
 
# media parameters 
> se:=0.1: ee:=80*e0:  
> si:=0.50: ei:=50*e0:  
> Cm:=1e-2: gm:=0:  
# volume fraction 
> p:=0.1: 
 

plotting conductivity and relative permittivity of the suspension 

# defining the circular frequency 
> omega:=2*Pi*10^logf:  
 
# plotting 
> plot(Re(s),logf=2..20, labels=[lg(f) (Hz), sigma (S/m)]);  
evalf(sigma_low); evalf(sigma_inf); 
 
> plot(Im(s)/omega/e0, logf=2..20, labels=[lg(f) (Hz), 
epsilon[r]]);  
evalf(epsilon_low/e0); evalf(epsilon_inf/e0); 
 
complex plot of the specific impedance of the suspension 

> with(plots):  
p1:=plot([Re(1/s),Im(1/s),logf=0..11], view=[0..11, 0..-5], 
labels=[Re(Z[spec]) (Omega), Im(Z[spec]) (Omega)]):  
display([p1]); 
 
Hints for final simplifications 

# for further simplifications of the equations Taylor or Pade approximations can be used, 
alternatively the obtained terms can be reduced manually 
# final simplifications, e.g. for binomial equations must be done for the individual equations 
either by hand or using Mathematica® 
 
  



5 
 

Simplifications of the media impedances and the Clausius-
Mossotti-factor 
In the ALE approach, the equivalent circuits for the internal, membrane and external 

impedances were simplified by reducing their number of R and C components 

depending on the considered frequency range. These simplifications reduce the 

complexity of the Clausius-Mossotti-factor and the calculation time (28). The following 

schemes show examples for such simplifications in different frequency ranges 

(compare to Fig. 1 B). 

DC case: 
 

membrane dispersion: 

 

beyond capacitive membrane bridging: 
 

bulk media dispersion: 

 

infinitely high frequencies: 
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