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SUPPORTING MATERIAL

A. Parameters of simulation

Table 1: Modeling parameters (1, 2)

Parameter Value

MT Young’s modulus, EMT 1.5 GPa
MT flexural rigidity, EIMT 1.8 10−24 Nm2

MAP tau protein Young’s modulus, ECL 5.0 MPa
MT element length, lMT

0 10 nm
MAP tau protein element length, lCL

0 45 nm
MT axial spring constant, kMT

s 47.1 N/m
MT bending spring constant, kMT

b 1.8 10−16 Nm
MAP tau protein axial spring constant, kCL

s 3.925 10−2 N/m
MT bead mass, mMT 1.48375 10−21 kg
MAP tau protein bead mass, mCL 2.0 10−22 kg
Microtubule resistance coefficients, CMT

n , CMT
t 2.1191, 1.2700

MAP tau protein resistance coefficients, CCL
n , CCL

t 5.9555, 4.9181
Time step, δt 0.1 ps
Steric energy scaling parameter ε0 1.10−16 Nm
Steric radius, σ0 12.5 nm

B. Discrete bead-spring model

MT beads are connected by linear springs with potential Vs given by the equation:

Vs = ks
(|r| − l0)

2

2
(1)

where ks is the spring constant, r is the separation distance, and l0 is the unstretched length of
the spring. The spring constant is related to the material properties of the filament by the equation,

ks =
EA

l0
(2)

where E is the Young’s modulus of the filament and A is the cross-sectional area of the filament.
MAP tau proteins are modeled as two-node linear spring elements, a representation common to a
number of cross-linked network models.

The bending potential is represented by a harmonic potential as a function of the bend angle θ.
The bending potential Vb thus takes the following form:

Vb = kb
(θ − θ0)
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where kb is the bending spring constant, θ is the angle between susbsequent elements, and θ0 is
the rest angle of the bend. The bending spring constant is related to the material properties of the
filament by the following equation:

kb =
EA

I
(4)
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where EI is the flexural rigidity of the filament. The flexural rigidity of a polymer is related to
its persistence length in the equation:

EI = lpkbT (5)

where lp is the persistence length, kb is the Boltzmann constant and T the temperature.
Moreover, given the tight packing configuration of the bundle, MTs are likely to penetrate

neighboring filaments in the bundle. Therefore it is essential to incorporate a repulsive force to
prevent this unrealistic event. This is implemented by adding a regulatory steric repulsion force
with an arbitrarily chosen exponentially decaying potential Vsr:

Vsr = ε0e
− |r|

σ0 (6)

where ε0 is the energy scaling parameter, r is the distance between sterically interacting beads,
and σ0 is the steric radius. The steric radius is set to the outer MT radius, 12.5 nm, and the energy
scaling parameter is selected to prevent penetration with minimal long-range effects. A cutoff radius
of 2.4 σ0 is used to truncate the steric interaction for computational efficiency while preventing
filament penetration.

The interaction forces are then derived from the potentials using the equation:

Fji = −∇V (rij) (7)

where V is the interaction potential and rij is the vector from bead i to bead j.
In our model, the presence of the cytoplasm is represented by tangential and normal drag forces on

the MTs and MAP tau proteins with viscosity μ. The MTs and tau proteins resistance coefficients
(CMT , CCL) describe the amount of drag force experienced by each of the elements. However,
brownian forces are not considered in this model due to the high persistence length of MTs, i.e. 420
μm, and dominance of exterior forces.

C. Application of torsion and calculation of bundle angle

Application of torsion

For small deformations, orthoradial force and associated shear stress are a linear function of radius.
Assuming that the 3 radii of the bundle maintain their relative ratio as shown in Eq. 8, the forces
can be calculated as in Eq. 9 at each time:

R2 ≈
√
3R1 ; R3 ≈ 2R1 (8)

f2 =
√
3f1 ; f3 = 2f1 (9)

Therefore:

f1 =
T

48R1
; f2 =

R2

R1

T

48R1
; f3 =

R3

R1

T

48R1
(10)

Finally, the orthoradial forces must be projected in the y- and z-axes, and after applying some
simplifications:

fiy = − T

48R2
avg

z

fiz =
T

48R2
avg

y

(11)
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Figure 1: Calculation of bundle angle. Initially both ends of a single MT filament are aligned on
the central axis of the bundle. Upon application of torsional loading, the two ends of the filaments
move in opposite directions. The angle θ formed by a single filament is calculated as shown in the
figure.

Calculation of bundle angle and number of bundle turns

Bundle angle is calculated by averaging the angle formed by each of the twelve external MT filaments
with respect to the central axis. The angle made by an individual MT filament can be visualized in
Fig. 1.

Assuming that (y1, z1) and (y2, z2) are the transverse coordinates of the two ends of a single
MT filament, the angle can be calculated by Eq. 12:

cos(θ) =
y1y2 + z1z2√

(y21 + z21)(y
2
2 + z22)

(12)

Number of bundle turns is calculated as a function of time in Figure 2. Upon 3 bundle turns, a
change of regime from a linear to a non-linear behavior is observed. This strongly suggests a change
in mechanical behavior of the MT bundle under torsion at 3 bundle turns.

D. Verification of model assumptions

To verify whether cross-sections remain parallel to each other, we calculated the x-deviation σx0,
i.e. deviation in x-axis, from the initial position as well as the x-deviation between beads of the
same cross-section. We monitored this value to make sure that it does not exceed twice of the
bead-spacing, i.e. 10 nm.

σx0 =

√∑
(xi − x0)2

18

σx =
1

2

√∑
(xi − xj)2

18 ∗ 17

(13)

The deviation from the initial hexagonal bundle geometry was also evaluated by calculating the
relative error that arises when assuming that the six beads of one of the three initial circles (i=1,2,3)
stay in a circle.

σri =

√
1
5

∑6
i=1(ri − r)2

r
(14)
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Figure 2: Number of bundle turns as a function of time. Up to 3 turns, a linear increase is observed.
From 3 to 7 turns, the number of turns accelerates with time, becoming a non-linear function of
time.

These values were calculated for the nine 1 μm-spaced cross-sections and was eventually averaged
among all of them.

Figure 3 shows that for the maximum turns studied here, σx remains below 20 nm. In addition,
the quantity σx0 never exceeds 6 nm, except for the bundle ends where it reaches 10 nm after 7
turns.

Figure 3: Left: x-deviation σx as a function of number of turns. Right: Relative error σri of
hexagonal configuration for each circle i.

As far as the preservation of the bundle hexagonal geometry is concerned, one first rough esti-
mation can be done visually (Fig. 4). As we can observe, the hexagonal geometry is preserved for
about 3 turns but is eventually deformed by further twisting.

The relative error σr shows that hexagonal configuration is relatively maintained in the middle of
the bundle. Particularly, the outer circle, which was chosen to calculate the average bundle radius,
is stable, reaching a relative error of less than 15% after 5 μs.
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Figure 4: Visualization of initial hexagonal geometry deformation. a) 0 turn ; b) 0.83 turn ; c) 1.7
turns ; d) 2.7 turns ; e) 4 turns ; f) 5.1 turns ; g) 7 turns ; h) more than 8 turns.

E. Energy curves during relaxation

Upon release of torsional loading at 1 μs, a sharp increase in different energies is observed. Curves
for MAP tau tensile energy and MT bending energy are displayed in Fig. 5.

Figure 5: Left: MAP tau tensile energy during relaxation experiment. Sharp increase of approxi-
mately 10-folds is observed upon release of torsional loading at 1 μs. Right: MT bending energy
during relaxation experiment. A significant increase of approximately 8-folds is observed upon re-
lease of torsional loading.

F. Sensitivity Analysis

Since different input parameters were used in our model, a sensitivity analysis is required to make
sure the results are reliable. We have previously performed a thorough sensitivity analysis on the
model in our first study on mechanical behavior of microtubules under tension (2) Fig. 6. Dif-
ferent parameters, including microtubule bending stiffness, microtubule elastic modulus, MAP tau
elastic modulus, and MAP tau length were increased/decreased by 5%, 10%, and 50%. Our results
demonstrated that the model is not very sensitive to modest changes in the system parameters,
suggesting that the results are acceptable given parameter estimates with reasonable agreement to
true physiological values.
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Figure 6: Sensitivity plots of the bundle response to different parameters. Microtubule bending
stiffness (solid line), microtubule elastic modulus (dashed line), cross-link elastic modulus (dash
dotted line), and cross-link length (dotted line) are varied. Response sensitivity is monitored as the
percent change in bundle strain (top left), percentage of energy stored in microtubule bending (top
right), percentage of energy stored in microtubule stretching (bottom left), and percentage of energy
stored in cross-link stretching (bottom right). The model shows relatively low sensitivity to modest
changes in system parameters, lending confidence to the conclusions.

[2] Stephen J. Peter, Mohammad R.K. Mofrad. 2012. Computational Modeling of Axonal Micro-
tubule Bundles under Tension. Biophys. J. 102:749-57.
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