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Abbreviations 

Table S1. Abbreviations in model equations 

mV
 

membrane potential (mV) 

celltotI _
 

total current of ion channels and exchangers (pA/pF) 

aXtotI __
 

total current of ion ‘X’ channels and exchangers at space ‘a’ (pA/pF) 

blkappI _
 

current applied through a patch electrode (pA/pF) 

XE
 

reversal potential of ion ‘X’ , determined by the Nernst equation (mV) 

mC
 

Whole cell membrane capacitance (pF) 

http://www.eheartsim.com/
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IG
 

conductance of current ‘I’ (pA /pF/mV) 

a_XGHK
 

a modified Goldman-Hodgkin-Katz equation of ion ‘X’ at space ‘a’ (mM) 

 ,,,k

 

rate constants (/ms) 

XdK _

 

dissociation constant for ion ‘X’ (mM) 

)(_ XIP

 

converting factor of current ‘I’ from GHKX (pA/pF /mM) 

Tcycv _

 

turnover rate of transporter ‘T’ (/ms) 

)a(_)S(p

 

probability of state ‘S’ in a scheme of state transitions at space ‘a’ 

XV

 
total volume of space ‘X’ (pL) 

atotalX ][

 

total concentration of substance ‘X’ at space ‘a’ (mM) 

afreeX ][

 
free concentration of substance ‘X’ at space ‘a’ (mM) 

aX ][

 

concentration of ‘X’ at space ‘a’ (mM) 

XJ

 
total flux of ion ‘X’ (amol/ms) 

Xz

 

valence of ion ‘X’ 

dt

Xd a][

 

rate of change of ‘X’ concentration at space ‘a’ (mM/ms) 

 

Model parameters 

Physical constants           Ion concentrations 

Table S2 Physical constants   Table S3 Ionic composition of external solution 
 

R 8.3143 C·mV/mmol/K 

T 310 K 

F 96.4867 C/mmol 

 

[K+]o 4.5 mM 

[Na+]o 140 mM 

[Ca2+]o 1.8 mM 
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Substrates (fixed) 

Table S4. Substrates 

[MgATP]cyt 6.631 mM 

[MgADP]cyt 0.0260 mM 

[Pi]cyt (free form) 0.5087 mM 

[H+]cyt 0.0001 mM 

[Mg2+]cyt 0.8 mM 

[SPM] 0.005 M 

 

GHK equation 

 The magnitudes of ion channel currents are described by the ohmic equation or by the GHK 

equation. In the latter case, the term to convert mM to pA (permeability times zF) in the original 

GHK equation is represented by a lumped converting factor, P in a unit of pA.mM-1, because of 

unknown total number of channels within a cell and single channel ion permeability. Then, the fully-

activated current amplitude (I) for an ion X is given by, 

 XGHKPI 
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Cell geometry and SR Ca2+ compartments  

The cell configuration and scalability of the HuVEC model (Sc_Cell) 

Almost all models of cardiac myocyte have been developed using a given input capacitance (Cm) and a 

whole cell volume (Vcell). However, the dissociated human ventricular myocytes show a large variety of 

both cell size (see Fig. 1 in (1)) and the input capacitance (Cm, Fig. S1) as has been obtained in other 

mammalian species (2). In the present study, we developed a cell model, which can maintain identical 

characteristics independently of the cell size. Since no human data are available for the relationship 

between Vcell and Cm, we referred to the data (red line in Fig. S1) obtained by Satoh et al., (3), who 

applied the three-dimensional volume rendering method of confocal images to dissociated rabbit, ferret 

and rat cells. Though the rat data showed a different slope, we used a slope of 0.197 pL/pF as a first 

approximation, which is similar to the experimental value of 0.215 pL/pF in both rabbit and ferret. The 

Vcell-Cm relationship (the red line in Fig. S1) was modified to meet the origin. A standard Vcell (Vstd = 
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37.92 pL) and a Cm (Cstd = 192.46 pF) were set at a medium size within the range of measurements in 

human ventricular cells, represented by a rectangular block with a standard size of 120 × 37.62 × 8.4 

m3, and an input capacitance of 192.46 pF. Note that the range of Vcell, calculated over the range of 

experimental Cm well overlaps with the experimental Vcell in Fig. S1. We confirmed that the 

characteristics of the cell remained unchanged if volume of intracellular Ca2+ compartments and rate of 

Ca2+ transfer between SR and the cytosol were scaled by a scaling factor, Sc_Cell = Cm / Cstd, where Cm is 

the input capacitance measured in a ventricular cell used in experiments.  

Fig. S1.  Relationship between Cm and Vcell in 
the human ventricular cells. 
 Measurements of the input capacitance Cm of dissociated 

human ventricular myocyte in various references are 

indicated along the abscissa by mean values from 2 

references (a; (1), c; (4)), or by mean ± SEM from 5 

references (b, (1), d; (5), e; (6), f; (7), g; (8)). An 

experimental measurement of Vcell in hearts with normal 

coronary arteries (9) is indicated with mean ± SEM along 

the vertical axis. The cell size used in GPB (red point) and 

ORd (black point) models are indicated in comparison with 

the thick red line representing the relationship between the 

Vcell and Cm in HuVEC model, given by the following 

equation. The black point on the red line indicates the 

standard cell in the present study. 

 

mcell CV 
46.192

92.37       

The experimental relationship in rabbit ventricular myocytes (3) is shown by the blue dotted line, which 

is given by, 

718.0215.0  mcell CV  

 

Table S5 compares the volumes of cell as well as Ca2+ compartments in HuVEC model with GPB and 

ORd models. The total volume of SR was set at 6% of Vcyt as in ORd model. The volume of SRrl in 

HuVEC model was adjusted based on two premises [1] [Ca2+]SRrl decreases to less than ~10% of the 

diastolic level during CICR as assumed in the previous studies (10, 11) in the presence of 3 mM 

calsequestrin (2.6 and 10 mM in GPB and ORd model, respectively), and [2] CICR results in a peak 

amplitude of ~0.5 M for the global Ca2+ transients in the presence of Ca2+ uptake by SERCA and 

myoplasmic Ca2+ buffers including troponin, calmodulin, ATP as well as fixed binding sites on the T-

tubule and SR membranes as in GPB model. 
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Table S5 Cell geometry compared with previous models 

 GPB model ORd model HuVEC model 

Cell configuration 

 (cell volume) 

(Vcell) 

Cylinder 

L = 100 m, r = 10.25 

m (= 33 pL) 

(Vcell) 

Cylinder 

L = 100 m, r = 11 m 

(= 38 pL) 

(Vcell) 

Scalable rectangular block 

L = 120 m, W = 37.62 m, D 

= 8.4 m   (= 37.92 pL) 

Bulk space 

 

(Vmyo) 

65% Vcell (= 21.45 pL) 

(vmyo) 

68% Vcell (= 25.84 pL ) 

(Vblk) 

68% Vcell (= 25.79 pL) 

Total SR space (Vsr) 

3.5% Vcell 

(= 1.16 pL) 

(Vsr) 

6% Vcell 

(= 2.28 pL) 

(Vsr) 

6% Vcell 

(= 2.28 pL) 

SR releasing site 

volume 

- (Vjsr) 

0.48 % Vcell 

(= 0.182 pL) 

(VSRrl) 

1.2 % Vcell 

(= 0.46 pL) 

SR uptake site 

volume 

- (Vnsr) 

5.52 % Vcell 

(= 2.098 pL) 

(VSRup) 

4.8 % Vcell 

(= 1.82 pL) 

Junction space (Vjunc) 

0.0539 % Vcell 

(= 0.0178 pL) 

- (Vjnc + Vnd) 

0.8 % Vcell 

(= 0.30 pL) 

Subsarcolemmal 

space 

(Vsl) 

2% Vcell 

(= 0.66 pL) 

(Vss) 

2 % Vcell 

(= 0.76 pL) 

(Viz) 

3.5 % Vcell 

(= 1.33 pL) 

Diffusion 

conductivity 

GCaslmyo = 3724 fL/ms Gdca_ssmyo = 3800 fL/ms GdCa_jnciz = 3396 fL/ms and 

GdCa_izblk = 3508 fL/ms 

Input capacitance 138.1 pF 153.4 pF 192.46 pF 

Ca2+ buffer 

The detailed set of buffer species (12) used in the GPB model was adopted after several simplifications 

as described in our previous paper (13). In short, we deleted the myosin, Na+ and Mg2+ buffers, and fixed 

[Mg2+]. The low affinity binding of Ca2+ to troponin (TnCl) was replaced by a contraction model (14) and 

the amount of the high affinity site (TnCh) was adjusted.  

 

Bulk space (blk) 
          CaMCakCaMCaCaMBCak

dt

CaMCad
off_CaMtotalblkon_CaM  2

 
 238.0_ CaMoffk , 34_ CaMonk

           TnChCakTnChCaTnChBCak
dt

TnChCad
off_TnChtotalblkon_TnCh  2

000032.0_ TnChoffk , 37.2_ TnChonk

           SRCakSRCaSRBCak
dt

SRCad
off_SRtotalblkon_SR  2

 
06.0_ SRoffk , 100_ SRonk
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Intermediate zone (iz) 
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 Release site of the SR (SRrl) 

CSQNon

CSQNoff

CaCSQNd
k

k
K

_

_

__       
 

65_ CSQNoffk ,  100_ CSQNonk

 1a                                                        

     d_CSQN_CaSRrltotaltotal KCaCSQNBb  2

  
SRrltotald_CSQN_Ca CaKc  2

  
                      

 
 

a

cabb
Ca SRrl






2

42
2
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Boundary Ca2+ diffusion 

Ca2+ transfer between cytosolic compartments 

Sc_Cell 22   )][Ca]([CaGJ izjncdCa_jncizCa_jnciz     
 

)(  3395.88 1

_

 msfLG jncizdCa 　  

Sc_Cell 22   )][Ca]([CaGJ blkizdCa_izblkCa_izblk    
 

)(  3507.78 1 msfLGdCa_jzblk
 

Ca2+ transfer from SR uptake site to release site 

cellScCaCaPJ SRrlSRuptransSRtrans _)][]([ 22

_  

  
 

8037.4transP
 

 

Ion channels and transporters 

L-type Ca2+ current (ICaL, LCC) 

We used the scheme of Shirokov et al. (1993) and Ferreira et al. (1997), in which Ca2+, passing through 

the channel itself, takes the primary role in the Ca2+-mediated inactivation (15-18). The same 4-state 

model was used for both LCCs in CaRU (ICaL_jnc) and for LCCs located in iz (ICaL_iz) and blk (ICaL_blk). 

The [Ca2+]nd determined by Eqs. 2 or S150-S153 were used to calculate the Ca2+-mediated inactivation 

for ICaL_jnc, and [Ca2+]nd determined by Eqs. S175, S176 for ICaL_iz and ICaL_blk. This [Ca2+]nd is ~10 times-

higher than the average [Ca2+]jnc in HuVEC or [Ca2+] in the Ca2+ compartments ([Ca2+]jnc in GPB or 

[Ca2+]ss in GPB models) obtained by the time-integration of fluxes in the cleft space in most of cardiac 

cell models. The rate constants for the Vm-gate (+ and ) and Ca2+-gate (+ and -) of LCC are given by 

Eqs. S1, S2 and Eqs. S5, S6, respectively. Both of the activation (+) and deactivation (-) rates of the 

Vm-gate were described as a function of two exponential terms, and adjusted to human data (see 

activation curve (chocolate) superimposed on experimental data in Fig. S2A, B). 

)
3500

(35.0)
5.8

(734.3

1

mm V
Exp

V
Exp 


(Eq. S1) 
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(Eq. S2) 

 The rate constant (+) for the Ca2+-inactivation was determined according to the Hinch algorithm. The 

inactivation rate + could be divided into two terms by integrating Eq. S3 with S4. 
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                        (Eq. S4) 

where VL is defined as a potential when half LCC open, VL width of opening potentials,  tL time 

switching between C and O states, L, inactivation time, KL concentration at inactivation and a biasing to 

make inactivation function of V. To avoid confusion,  and KL from Hinch model were given a tilde. 

The first term of Eq. S4 is a function of both [Ca2+]nd, the activation rate of Vm-gate (


~ ) and Vm. The 

second term is a sigmoidal function of Vm, increasing with increasing negativity of Vm toward a 

saturation level, unlikely in experiments. Therefore, the second term was removed for simplicity, and Eq. 

S5 was used in our model. 

LL

nd

KT

Ca




 








][ 2
  ,                                                           (Eq. S5) 

where + is given by Eq. S1 andL/tL in Eq. S4 was substituted by TL. 

51.147LT  

 In the revised model, the values of TL (= 147.51) and KL (=0.0044 mM) (or the product of TL × KL) for 

+, and a new equation for - (Eq. S5 and S6) were determined by referring to the experimental 

measurements of steady-state inactivation (Fig. S2_B) and time constants (Fig. S2_C3) described in 

literatures (see legends of Fig. S2 for references). The value of [Ca2+]nd (CaL0, or CaLR) shown in Fig. 

S2C1 was determined by Eq. S152 or S153, respectively, at a representative [Ca2+]SRrl of 0.7 mM and a 

[Ca2+]jnc of 0.0001 mM.  The + was calculated at four different values of [Ca]SRrl (0.71, 0.51, 0.31, 0.11 

mM) as shown in Fig. S2_B and S2_C, since [Ca]SRrl might be different in experimental conditions and 

thereby caused variations in the data of ICaL inactivation. The rate of removing Ca2+ inactivation (-) was 

determined by referring to the recovery rate from the inactivation at the resting potential in Fig. S2C3 

and the Vm-dependence of steady-state inactivation in B. 
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 (Eq. S6) 

The [Ca2+]nd for LCC located in iz and blk were calculated in the same way as in CaRU.  
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Fig. S2. Determination of LCC gating from the experimental data  

A: activation (+, red) and deactivation rate constants (-, blue) and the sum of the two rate constants (1 / 

, gray). B: the steady-state activation and inactivation of LCC. Data points are from Mewes & Ravens 

(6) (red), Pelzmann et al. (19) (blue), Magyar et al. (20) (chocolate) and Li et al., (21) (black). C1: the 

[Ca2+]nd –Vm relations were calculated for CaL0 (red), CaLR (gray), and Ca0R (chocolate) together with KL 

in Eq. S5 (blue). C2: the inactivation rate (atCaL0) plotted for four [Ca]SRrl (+, red curves), and removal  

rate from inactivation (-, chocolate curves) given by the two components in Eq. S6. C3: the Vm-

dependence of Ca2+-inactivation Data points are from Beukelmann et al.(1) (red), Pelzmann (19)  

(blue), Fulop et al., (22) (a single chocolate point) and Pelzmann (19) (black points connected with gray 

line are the fast and slow components).  

 

oocoooLCC_a YYpO                                                         (Eq. S7) 

341
1

1

)
[ATP]

.
(

pOGHKPfI LCC_aX_aCaL_XCaL_aCaL_X_a




                                (Eq. S8) 

a = (blk, iz, jnc), X = (Ca, Na, K).     [ATP] was fixed to 6 mM.  

Fraction of ICaL 

75.0_ jncCaLf    ,  100.fCaL_blk  ,
 

15.0_ izCaLf
 

Converting factors
 

2114.PCaL_Ca   

CaL_CaCaL_Na P.P  00001850  

CaCaLKCaL PP __ 000367.0 
 

 

)(

)()(

______

____________

blkKCaLblkNaCaLblkCaCaL

izKCaLizNaCaLizCaCaLjncKCaLjncNaCaLjncCaCaLCaL

III

IIIIIII





                (Eq. S9) 

Ca2+-mediated inactivation in other models for comparison 

 Ca2+-mediated inactivation in ORd model was examined under the widely used assumption that the IBa 

through LCC was solely due to VDI. This assumption is different from the thorough experimental 

conclusion by Brunet et al. (23) and Ferreira et al. (18) (see also Discussion in Grandi et al. (24)). 

Ferreira et al, (18) recorded IBa in the transfected cell-line with the pore-forming 1 subunit in 

association with  subunits, and revealed that the IBa decayed as the sum of two exponentials, where the 

first one (= 600 ms at 21 oC) was accompanied with no gating current, but the slow one ( = 6 s) was 

with the gating current, indicating that the former is CDI and the latter is VDI. Brunet et al. (23) 

suggested that the CDI of IBa is mediated by a low affinity binding of Ba2+ to calmodulin as has been 

suggested in foregoing studies (18, 25, 26), and indicated that unambiguous measurement of VDI 

requires use of Na+ or another monovalent cation as charge carrier (for the slow inactivation of INa via 

LCC, see Matsuda (27)). In HuVEC model, we simply ignored the relatively slow inactivation of INa for 

the sake of simplicity. 

 The time course of LCC inactivation during AP was conventionally examined by recording 

compensation currents (Icp) during the ICaL blockage in the AP clamp experiment. However, our 

simulation of the AP clamp indicated (not shown) that Icp is not equal to ICaL, but represents a sum of 
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modifications of all current components, such as ICaL, INCX, IKs, ICab, IL(ca) and IPMCA caused by blocking 

the Ca2+-flux of ICaL. 

 

Sodium current (INa) 

The same INa model as in our previous study (13) was used, except for the amplitude parameters, fL 

and PNa. INa is composed of the two components, INaT and INaL. 

NaLNaTNa III 
                                                           

(Eq. S10)   

 

Transient component (INaT) 

  NaTICOCNaCIsfNaTsIsbNaTCINaTOC
NaT CpkkfkIpkIpkOpk

dt

Cdp
)()()()()(

)(
222_22                

(Eq. S11)    

  NaT2OIOCNaTO2CNa_CNaT2O2I
NaT )O(pkk)C(pkf)I(pk

dt

)O(dp


                      (Eq. S12)   

  NaT2IsfO2IC2INaTsIsbNaT2OINaT2I2CNa_C
NaT2 )I(pkkk)I(pk)O(pk)C(pkf

dt

)I(dp
                                                                                                                                         

(Eq. S13) 

NaTsIsbNaTIsfNaT2Isf
NaTs )I(pk2)C(pk)I(pk

dt

)I(dp


                                (Eq. S14)    








 







7

48
exp1

1

)( 21

2
_

m

NaC
VCC

C
f

                                            
 (Eq. S15)    


























0.100
exp15.0

0.8
exp0025.0

1
2

mm

OC
VV

k
                                     

   (Eq. S16) 






















0.50
exp53.0

0.12
exp0.30

1

mm

OC
VV

k

                  

                         (Eq. S17)    


























0.2000
exp34.0

0.27
exp0433.0

1
2

mm

OI
VV

k

                                        

(Eq. S18)   

 

0001312.02 OIk    

OCOI

OCOI
IC

kk

kk
k

22

2
22

0.1

5.0








                                                       

(Eq. S19)   

 

222 5.0 ICCI kk 
                                                          

(Eq. S20)   

 






















0.16
exp0.50000

0.10
exp0.300000

1

mm

Isb
VV

k

                                        

(Eq. S21) 


























0.45
exp0.8

9.9
exp016.0

1

mm

Isf
VV

k

                                        

(Eq. S22)   

 

  NaTKNaNaLNaT )O(pGHK1.0GHKP)f1(I                                     
(Eq. S23)   
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 Late component (INaL) 

The kI1I2, kOI1, kI1O, kI1C and kC2I1 are specific for INaL, and other rate constants are the same as in 

INaL.   

   NaLICICOCNaCIsf

NaLsIsbNaLCINaLCINaLOC
NaL

Cpkkkfk

IpkIpkIpkOpk
dt

Cdp

)(

)()()()(
)(

12222_

2211





                  
(Eq. S24)   

 

  NaL1OIOCNaLO2CNa_CNaL1O1I
NaL )O(pkk)C(pkf)I(pk

dt

)O(dp


                     (Eq. S25)   

 

  NaL12I1IC1IO1INaL1I2CNa_CNaL1OI
NaL1 )I(pkkk)C(pkf)O(pk

dt

)I(dp
                  

(Eq. S26)   

 

  NaL2IsfC2INaLsIsbNaL12I1INaL2I2CNa_C
NaL2 )I(pkk)I(pk)I(pk)C(pkf

dt

)I(dp


 
                                                                         (Eq. S27)    

NaLsIsbNaLIsfNaL2Isf
NaLs )I(pk2)C(pk)I(pk

dt

)I(dp


                             (Eq. S28)   

00534.021 IIk
 

 
21 OIOI kk   

01.01 OIk  

CICI kk 21   

2212 ICIC kk   

  NaLKNaNaLNaL )O(pGHK1.0GHKPfI                                          
(Eq. S29)    

13125.0Lf , 8.1072NaP
   

(pA/mM)             
 

 

 Inward rectifier potassium current (IK1) 

 The characteristic inward-going rectification of IK1 has been widely observed in mammalian 

ventricular cells, including human cells. Yan and Ishihara (28) and Ishihara and Yan (29) conducted 

detailed analysis using transfected 293T cell line and demonstrated the time-dependent kinetic changes in 

IK1 (IK1 transient) on repolarization to -30~-50 mV, and explained it by the time lag between the 

instantaneous relief of Mg2+-block and the relatively slow spermine-block during AP repolarization. We 

adopted this model after adjusting the amplitude of IK1 to obtain a maximum repolarizing rate of ~1 V/s.
 

[Mg2+]cyt fixed at 0.8 mM for the Mg2+-block in the mode 1, and spermine concentration [SPM] = 5 M.
   KmMg EV  025.0exp0.12

                                               (Eq. S30)
 

 

  KmcytMg EVMg   025.0exp][28 2                                           (Eq. S31) 

MgMg

Mg

Of





     
                                                          

(Eq. S32)   

 

 MgMg

Mg

Bf





                 
                                            

(Eq. S33)   

 

OOOMg fffpo 
                                                          

(Eq. S34)   

 

BOOMg fffpo  0.31                                                       
(Eq. S35)   

 

BBOMg fffpo  0.32                                                      
(Eq. S36)   
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The SPM-block in the mode 2 

   
   cytKm

cytKm

SPM
MgEV

MgEV

][812.0exp01.00.1

][807.0exp17.0
2

2










                                       (Eq. S37)   

 

   
   cytKm

cytKm

SPM
MgEV

MgEVSPM

][813.0exp01.00.1

][815.0exp][28.0
2

2










                                (Eq. S38) 

   
 

spmSPMspmMgSPM

spm
PbPb1po

dt

dPb


                                       (Eq. S39)   

 

𝑝𝑜𝑚𝑜𝑑𝑒 1 = 𝑓𝑚𝑜𝑑𝑒 1 ∙ (1 − 𝑃𝑏𝑠𝑝𝑚) ∙  (𝑝𝑜𝑀𝑔 +
2

3
∙ 𝑝𝑜𝑀𝑔1 +

1

3
∙ 𝑝𝑜𝑀𝑔2)

                  (Eq. S40)    

𝑓𝑚𝑜𝑑𝑒 1 = 0.9                                                             

 𝑝𝑜𝑚𝑜𝑑𝑒 2 =
(1−𝑓𝑚𝑜𝑑𝑒 1)

1.0+
[𝑆𝑃𝑀]

40.0∙𝑒𝑥𝑝(−
𝑉𝑚−𝐸𝐾

9.1 )
 

      
                                           (Eq. S41)   

 

𝑝(𝑂)𝐾1 = 𝑝𝑜𝑚𝑜𝑑𝑒 1 + 𝑝𝑜𝑚𝑜𝑑𝑒 2                                               
  (Eq. S42)   

     

 







 
















60

22
exp01

54

40

1

.

.][K
.

.

][K

o

.

o

K

         

                                           (Eq. S43)    

  1111 )( KKmKKK OpEVGI  
                                              (Eq. S44)   

 

35311 .GK   

 

 Delayed rectifier K+ current, fast component (IKr) 

Different models of IKr were used in the GPB and ORd models. We adopted the ORd IKr model, which 

was developed by referring to the slow inactivation kinetics of IKr demonstrated in Iost et al. (8) and Jost 

et al. (4). We adjusted the amplitude of IKr to a medium size of IKr tail currents at -40 or -30 mV among 

different references (0.25 in Iost et al. (8); 0.29 in Jost et al. (30), 0.57 in Jost et al. (4), 0.31 in Magyar et 

al. (20), 0.32 in Li et al. (7), and 0.25 pA/pF in Rajamani et al. (31)). The experimental prolongation of 

APD90 was well reconstructed by blocking IKr (with a limiting amplitude of ~0.3 pA/pF), which is less 

than a half of that in ORd model of 0.85 pA/pF (see Results, Fig. 3A1 red and 4 blue).  

𝑋𝑟,∞ =
1

1+𝑒𝑥𝑝(
−(𝑉𝑚+8.337)

6.789
)
                                                      

(Eq. S45)   

                              
                                

 

𝜏𝑋𝑟,𝑓𝑎𝑠𝑡 = 12.98 +
1

0.3652∙𝑒𝑥𝑝(
𝑉𝑚−31.66

3.869
)+4.123∙10−5∙𝑒𝑥𝑝(

−(𝑉𝑚−47.78)

20.38
)
                       

(Eq. S46)   

                                         

𝜏𝑋𝑟,𝑠𝑙𝑜𝑤 = 1.865 +
1

0.06629∙𝑒𝑥𝑝(
𝑉𝑚−34.70

7.355
)+1.128∙10−5∙𝑒𝑥𝑝(

−(𝑉𝑚−29.74)

25.94
)
     

                 (Eq. S47)                            
  

𝐴𝑋𝑟,𝑓𝑎𝑠𝑡 =
1

1+𝑒𝑥𝑝(
𝑉𝑚+4.81

38.21
)
                  

                                    (Eq. S48)   

 

𝐴𝑋𝑟,𝑠𝑙𝑜𝑤 = 1 − 𝐴𝑋𝑟,𝑓𝑎𝑠𝑡                                                     
  (Eq. S49)   

 

𝑑𝑋𝑟,𝑓𝑎𝑠𝑡

𝑑𝑡
=

𝑋𝑟,∞−𝑋𝑟,𝑓𝑎𝑠𝑡

𝜏𝑋𝑟,𝑓𝑎𝑠𝑡
                     

                                    (Eq. S50)   

 

𝑑𝑋𝑟,𝑠𝑙𝑜𝑤

𝑑𝑡
=

𝑋𝑟,∞−𝑋𝑟,𝑠𝑙𝑜𝑤

𝜏𝑋𝑟,𝑠𝑙𝑜𝑤
                                                         

(Eq. S51) 

𝑋𝑟 = 𝐴𝑋𝑟,𝑓𝑎𝑠𝑡 ∙ 𝑋𝑟,𝑓𝑎𝑠𝑡+𝐴𝑋𝑟,𝑠𝑙𝑜𝑤 ∙ 𝑋𝑟,𝑠𝑙𝑜𝑤

                                         (Eq. S52)    
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𝑅𝐾𝑟 =

1

(1+𝑒𝑥𝑝(
𝑉𝑚+55

75
))∙(1+𝑒𝑥𝑝(

𝑉𝑚−10

30
))                                            (Eq. S53)               

𝑝(𝑂)𝐾𝑟 = 𝑋𝑟 ∙ 𝑅𝐾𝑟

                         
                                

 (Eq. S54)   

 

  


𝐾𝑟
= √

[𝐾+]𝑜

4.5                                
                             (Eq. S55)   

 

 

  KrKmKrKrKr OpEVGI )( 

                                          (Eq. S56)                  
0.0166KrG

                                                                               

                    

 

 Delayed rectifier K+ current, slow component (IKs) 

The gating kinetics of ORd model was used after separating IKs into two components, IKs_K and IKs_Na 

and using the GHK equation. The permeability ratio, PNa : PK = 0.04 : 1.  

𝑝𝑎𝑟𝑎𝑋𝑠1_𝑎,∞ =
1

1+𝑒𝑥𝑝(
−(𝑉𝑚+11.60)

8.932
)
                                              

  (Eq. S57)   

 

𝜏𝑋𝑠1_𝑎 = 817.3 +
1

2.326∙10−4∙𝑒𝑥𝑝(
𝑉𝑚+48.28

17.80
)+0.001292∙𝑒𝑥𝑝(

−(𝑉𝑚+210.0)

230.0
)
  

                     (Eq. S58)   

 

𝑑𝑝𝑎𝑟𝑎𝑋𝑠1_𝑎

𝑑𝑡
=

𝑝𝑎𝑟𝑎𝑋𝑠1_𝑎,∞−𝑝𝑎𝑟𝑎𝑋𝑠1_𝑎

𝜏𝑋𝑠1_𝑎
                                              

 (Eq. S59)   

 

𝑝𝑎𝑟𝑎𝑋𝑠2_𝑎,∞ = 𝑝𝑎𝑟𝑎𝑋𝑠1_𝑎,∞                                                  

 (Eq. S60)   

 

𝜏𝑋𝑠2_𝑎 =
1

0.01∙𝑒𝑥𝑝(
𝑉𝑚−50

20
)+0.0193∙𝑒𝑥𝑝(

−(𝑉𝑚+66.54)

31
)
                                     

 (Eq. S61)   

 

𝑑𝑝𝑎𝑟𝑎𝑋𝑠2_𝑎

𝑑𝑡
=

𝑝𝑎𝑟𝑎𝑋𝑠2_𝑎,∞−𝑝𝑎𝑟𝑎𝑋𝑠2_𝑎

𝜏𝑋𝑠2_𝑎
                                              

 (Eq. S62)   

 

4.1

2

_

][

000038.0
1

6.0
1

















a

aRKs

Ca

para
                                             

  (Eq. S63)    

aRKsaxsaxsaKs paraparaparaOp __2_1_)(                                        

  (Eq. S64)    

aKsXXKsaKsaXKs OpGHKPfI _____ )(
                                             (Eq. S65)   

 

a = (blk, iz),   X = (K, Na) 

1.0_ izKsf
, 

9.0_ blkKsf
 

 Converting factors
 

0.002782_ KKsP , 
KKsNaKs PP __ 04.0   

)()( ________ blkNaKsblkKKsizNaKsizKKsKs IIIII 
                                  (Eq. S66)    

 

Transient outward K+ current (IKto) 

The gating kinetics of the ORd model was used after adjusting GKto. 
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𝑎∞ =
1

1+𝑒𝑥𝑝(
−(𝑉𝑚−14.34)

14.82
)
                                                       

(Eq. S67)   

                              
                                

 

𝜏𝑎 =
1.0515

1

1.2089∙(1+𝑒𝑥𝑝(
−(𝑉𝑚−18.41)

29.38 ))

+
3.5

1+𝑒𝑥𝑝(
𝑉𝑚+100

29.38 )

                                        
(Eq. S68)   

          

𝑑𝑎

𝑑𝑡
=

𝑎∞−𝑎

𝜏𝑎
                                                                 

(Eq. S69) 

𝑖∞ =
1

1+𝑒𝑥𝑝(
𝑉𝑚+43.94)

5.711
)
    

                                                    
 (Eq. S70)               

 

𝜏𝑖,𝑓𝑎𝑠𝑡 = 4.562 +
1

0.3933∙𝑒𝑥𝑝(
−(𝑉𝑚+100)

100
)+0.08004∙𝑒𝑥𝑝(

𝑉𝑚+50)

16.59
)
                           

 (Eq. S71)  

𝜏𝑖,𝑠𝑙𝑜𝑤 = 23.62 +
1

0.001416∙𝑒𝑥𝑝(
−(𝑉𝑚+96.52)

59.05
)+1.7808∙10−8∙𝑒𝑥𝑝(

𝑉𝑚+114.1

8.079
)
                     

 (Eq. S72)               
 

𝐴𝑖,𝑓𝑎𝑠𝑡 =
1

1+𝑒𝑥𝑝(
𝑉𝑚−213.6

151.2
)
                                  

                    (Eq. S73)   

 

𝐴𝑖,𝑠𝑙𝑜𝑤 = 1 − 𝐴𝑖,𝑓𝑎𝑠𝑡                                                        
 (Eq. S74)   

 

𝑑𝑖𝑓𝑎𝑠𝑡

𝑑𝑡
=

𝑖∞−𝑖𝑓𝑎𝑠𝑡

𝜏𝑖,𝑓𝑎𝑠𝑡
                     

                                        (Eq. S75)   

 

𝑑𝑖𝑠𝑙𝑜𝑤

𝑑𝑡
=

𝑖∞−𝑖𝑠𝑙𝑜𝑤

𝜏𝑖,𝑠𝑙𝑜𝑤
                                                             

(Eq. S76) 

𝑖 = 𝐴𝑖,𝑓𝑎𝑠𝑡 ∙ 𝑖𝑓𝑎𝑠𝑡+𝐴𝑖,𝑠𝑙𝑜𝑤 ∙ 𝑖𝑠𝑙𝑜𝑤

                                                (Eq. S77)    

𝑝(𝑂)𝐾𝑡𝑜 = 𝑎 ∙ 𝑖
                                

                           
  (Eq. S78)               

 KmKtoKtoKto EVOpGI  )(                                              

 (Eq. S79)    

0.0312KtoG  

 

Time-independent currents 

All these currents are from Takeuchi et al. (32) as described in Asakura et al. (13). 

Voltage-dependent potassium current (plateau current) (IKpl) 

𝑝(𝑂)𝐾𝑝𝑙 =
𝑉𝑚

1−𝑒𝑥𝑝(−
𝑉𝑚
13.0

)
                                                      

 (Eq. S80)   

 


𝐾𝑝𝑙

= (
[𝐾+]𝑜

5.4
)

0.16

                                     
                     (Eq. S81)   

 

KKplKplKplKpl GHKOpPI  )(

                                                (Eq. S82)    

0000172.0KplP  

Background calcium current (ICab) 

CaaCabaCabaCab GHKfPI  ___
   a = (blk, iz)                               

  (Eq. S83)    

00006822.0_ aCabP
 

Fraction of ICab 

1.0_ izCabf
  9.0_ blkCabf  
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blkCabizCabCab III __ 
                                                      (Eq. S84)   

 

Background non-selective cation current (IbNSC) 

XXbNSCXbNSC GHKPI  __       X = (K, Na)                                   
(Eq. S85)    

00014.0_ KbNSCP   00035.0_ NabNSCP
 

NabNSCKbNSCbNSC III __ 
                                                  (Eq. S86)   

 

Calcium-activated background cation current (Il(Ca)) 

3

a

2

a

]Ca[

0012.0
0.1

0.1
)O(p















                                                   

  (Eq. S87)    

aXaCalXCalaXCal OpGHKfPI )(_)(_)(__)( 
  
      X = (Na, K),  a = (blk, iz)   

        (Eq. S88)    

00273.0_)( NaCalP  

NaCalKCal PP _)(_)(   
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ATP-sensitive potassium current (IKATP) 
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 (Eq. S90)   
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(Eq. S91)   

 

  KATPKATPKmKATPKATP OpEVGI  )(                                           
(Eq. S92)   

674.17KATPG
 

 

 

 Na+/K+ pump current (INaK) 

As described in PBMB, the Na+/K+ pump model developed by Oka et al. (33) on the framework of 

Smith and Crampin (34) was used after adjusting AmpNaK.  
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Naod

o
o

K ,

]Na[
Na



                                                       
(Eq. S94)   

     
   

 

Kid

i
i

K ,

]K[
K



                                                         
(Eq. S95)   
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(Eq. S97)   

     
   

 

RT

FV
KK mNao

NaodNaod


 exp0

,,
                                          

(Eq. S98)   
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(Eq. S99)   
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(Eq. S100)   
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(Eq. S105)   
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(Eq. S109) 

72.01 k   08.01 k   08.02 k   008.02 k   43 k   80003 k   3.04 k   2.04 k   
(Eq. S110)

 

 
716_1113_8272

7 PPPP
dt

dP
  

                                  
 

(Eq. S111)

 

13_827215_14313_83

13_8
PPPP

dt

dP
  

                                (Eq. S112) 

716_111 PPVstep                                                          
(Eq. S113)

 

13_82722 PPVstep                                                         
(Eq. S114)

 

15_14313_833 PPVstep                                                       
(Eq. S115)
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6_1415_1444 PPVstep                                                       
(Eq. S116)

 

2_ stepNaKcyc Vv 
                         

                                   
(Eq. S117)

 

NaKcycNaKNaK vAmpI _
                  

                                    
(Eq. S118) 
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       3_ NaNaKStoi      

NaKKNaKKNaK IStoiI  __
                (Eq. S119) 

2_ KNaKStoi
       

                                                                                                   
(Eq. S120)

 

 

Na+/Ca2+ exchange current (INCX) 

The NCX model developed by Takeuchi et al. (32) was used after adjusting the amplitude factor 

AmpNCX. 

 a = (blk, iz) 

  offaCainaonaCainaaa ffNaEq _1__1_1_1 1)(  
                               

(Eq. S121) 

  offaCainaonaCainaa ff _1__1__1 1  
                                       

(Eq. S122)

 

  offaCainaonaCainaa ff _2__2__2 1  
                                       

(Eq. S123)

 

  offaCainaonaCainaa ff _2__2__2 1  
                                       

(Eq. S124) 
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(Eq. S125) 

)()( 1311_ CaEqkNaEqk aaaE 
                                           

(Eq. S126) 
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(Eq. S128) 
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 
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(Eq. S130) 
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(Eq. S131) 
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(Eq. S132) 
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(Eq. S136) 
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(Eq. S137) 
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(Eq. S138) 
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(Eq. S139) 
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(Eq. S140) 
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(Eq. S141)
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(Eq. S142)
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Plasma membrane Ca2+-ATPase current (IPMCA) 

The model equation used in Grandi et al. (35) was used for spaces iz and blk after adjusting the 

amplitude factor AmpPMCA and Km.  

 
    6.126.1
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(Eq. S143) 

a = (blk, iz)
  
1.0_ izPMCAf ,  9.0_ blkPMCAf ,  91.0PMCAAmp , Km=0.0005 

blkPMCAizPMCAPMCA III __ 
                        

                         
(Eq. S144) 

      

 

CaRU 

LCC 

The tightly coupled LCC-RyR kinetic model developed by Hinch et al. (36) was used after 

modifications. The new LCC model is described in the section L-type Ca2+ current. 

RyR channel  

The state transition of a RyR is defined by the two–state transition with the activation rate, kco and 

deactivation rate koc. 
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
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(Eq. S145) 

The [Ca2+]nd for the activation is, 

[Ca2+] nd = CaL0 for LCC-dependent activation of a RyR 

[Ca2+] nd = Ca00 for spontaneous activation of a RyR 

 

5664.010 Qkoc                                                          
     

(Eq. S146) 
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(Eq. S147) 

 

The state transition of couplon at the regenerative step is also described by the two-state transition 

scheme. 

OpenClosed

roc

rco

k

k




 

The activation rate krco and the deactivation rate kroc are, 

)][0( 2

SRrlcotnrco Caslockffk 

                                            
  

(Eq. S148) 
fn = 7, 1.00 sloc  

[Ca2+]nd = CaLR for LCC-dependent activation, 

[Ca2+]nd = Ca0R for RyR-dependent spontaneous activation, 
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(Eq. S149) 

The ft in Eq. S149 is calculated using Ca00. NRyR is the number of RyRs in a couplon and assumed to 

be 10. 
 

The [Ca2+]nd (indicated in Fig. 1) is defined as Ca00, Ca0R, CaL0 or CaLR. 
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(Eq. S150) 
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(Eq. S152) 
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LCC open; RyR open: 
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(Eq. S153) 
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(Eq. S155) 
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(Eq. S156) 

 

cellSc)]-[Ca]([Cap(O)PJ jncSRrltRyRrelCa _22

_    
                           

(Eq. S157) 

)(  67.5967 1 msfLPRyR
            (whole cell) 

 

Sarcoplasmic reticulum Ca2+ pump (SERCA) current (JSERCA) 

The three-state model developed by Tran et al. (37) was used after several minor modifications as 

described in Asakura et al. (2014) (13). The limiting amplitude of JSERCA, ampSERCA, was 
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modified. 
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(Eq. S158) 
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(Eq. S159) 

KdCai = 0.0027 (mM) 
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(Eq. S160) 

KdCasr = 1.378 (mM) 
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(Eq. S163) 
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(Eq. S165) 

ampSERCA = 106.4448  (mmol.ms-1) 

 

Rate of change in the membrane potential and ion 

concentrations 
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(Eq. S166) 
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(Eq. S167) 
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(Eq. S168) 
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(Eq. S169) 
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(Eq. S170) 
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(Eq. S171) 
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(Eq. S173) 
 

Ion concentrations 
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(Eq. S175) 
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(Eq. S176) 
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Contraction 

The original model of Negroni and Lascano (38) was used. The magnitude of Fb is given in a unit of 

mN mm-2. The binding of Ca2+ to a troponin system (TS) having 3 Ca2+ binding sites (given in M) 

was included in the equation of determining the concentration of free Ca2+ in the bulk compartment.
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(Eq. S181) 
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Supplemental Figures and Tables 

Determination of the deactivation rate of a couplon 

Determination of the closing rate (Eq. S149) of the Hinch-type couplon 

model  

The closing rate of a couplon may be different from that of single RyR. We addressed this question 

by comparing the closing rate between a single RyR and a regenerative couplon by examining the 

statistical distribution of open times, which is described by a monoexponential decay function of the 

form: 



t

e eNtf


)(                                                                                                                      (Eq. S182) 

where f(t) is the number of observed open events of life time t, Ne is the total number of open events, 

and  is the inverse of the transition rate. The two-state transition schemes defined for both RyR and 

couplon in the present study are, 

OC
koc

kco




 for a single RyR, and OC









 for a couplon.                        

In the following analysis, 10 RyRs (NRyR = 10), which have no co-operativity, were assumed in a 

single couplon. For simplicity, the couplon closed state was defined as the state when all RyRs were 

closed, and the open state when one or more RyRs were open at any given time. 

The effects of the multiple openings of RyRs within a couplon on the closing rate  

 Using the transition rates, kclose and kopen, in the LC model, we calculated the stochastic state 

transitions of individual RyRs within the couplon and Fig. S3A shows a sample segment of 

reconstructed time course of state transitions of RyRs. The couplon close times (tc) are indicated by 

the thick black bars under the record, and thus the open time (to) is indicated by the interval between 

two sequential black bars. The distribution of to was analysed by constructing histograms of number 

of observation in panel B. An attempt to fit a single exponential using single RyR kinetics (koc) (Eq. 

S183) to the histogram (red curve in panel B) was clearly unsatisfactory. The distribution of f(to) of a 

couplon showed a marked deviation from a single exponential at longer to events. 
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ooc tk

eo eNtf


)(                                                                                                             (Eq. S183) 

We assumed that this deviation resulted from multiple open events (MOEs) overlapping with single 

level opening, which are shown by green bars (tm,i) in Fig. S3A. To test this view, we subtracted the 

sum of tm,i from to (Eq. S184) to define a corrected open time (to’) as in Eq. S184. 





k

i

imoo ttt
1

,'
                                                                                                                        (Eq. S184) 

The red line in Fig. S3B fitted well to the f(to’) (Eq. S185) in Fig. S3C, suggesting that MOEs are 

indeed responsible for the deviation of the couplon open dwell time histograms in Fig. S3B from a 

monoexponential function calculated using single RyR kinetics (koc) (Eq. S183).  

'
)'( ooc tk

eo eNtf



                                                                                                                     (Eq. S185)

 

 

Fig. S3 Dwell time histograms for to and to’ obtained from stochastic calculation of a couplon 

consisting of RyRs (NRyR = 10) at [Ca]nd = 50M. A: probability of open RyRs within a couplon. 

Black, red and green colours indicate durations that none, one, or multiple RyRs are open at the 

time. The closed, open, and multiple open time durations are indicated by tc, to and tmi (i = 1~k), 

respectively. B; dwell time histogram for to, fitted with a monoexponential function with  = 1/koc. C: 

dwell time histogram for to’, fitted with the same monoexponential function as in B. The large 
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number of events at the last bin in the histogram are the sum of events observed at longer open dwell 

time than the maximum value of 50 ×  0.1 (binwidth) = 5 ms. 

 

Determination of closing rate of a couplon,

 According to the findings described above, the closing rate of a couplon () might be determined 

from the closing rate koc of RyR, provided that the fraction to’/ to is predicted. Based on the fact that 

all the remaining RyRs (NRyR - 1) are closed during to’ except the single open RyR, this probability 

of simultaneous closure of (NRyR - 1) RyRs will be approximated by
lNRyRpC
 )1(

. 

lN

o

olN

ooo
RyRRyR pC

t

t
orpCttgt
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)1()1( '
)('

                                                                (Eq. S186) 

where pC is the steady state closed probability of a single RyR (Eq. S187), and l is a correction 

factor.  
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Then, the distribution of couplon open times to is given by,  

o
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and
 

lN

oc
RyRpCk




)1(
 .                                                                                                              (Eq. S189)                                                                       

  Lastly, we fixed the correction factor, l, by performing stochastic simulations for various [Ca]nd. 

We calculated the ensemble average of Ne = 5000 open events as shown by an example at 50 M 

[Ca]nd in Fig. S4A, which was well fitted with a single exponential function (red curve) using the 

least squares method. The closing rates of a couplon thus obtained at various [Ca]nd are plotted in 

Fig. S4B for the LC model (red). The same analysis was also applied to our couplon model in 

HuVEC model and results were plotted by black symbols. The two continuous curves, red and black 
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superimposed on the data points, were drawn by Eq. S189 using a common l fixed at 0.74.  We also 

confirmed that Eq. S189 was applicable to couplons consisting of 1~20 RyRs. 

 In brief, we conclude that the closing rate defined by the two state transition model of a couplon is 

different from that of single RyR kinetics because of overlaps of MOEs during the ‘open time of a 

couplon’.   

 

Fig. S4 Determination of the closing rate  for the two-state couplon model. 

A: Ensemble mean of couplon open times. The ensemble mean of open times (to) was constructed by 

cumulating individual open events during the course of stochastic computation of 10 RyRs within a 

couplon until 5000 events were accumulated (Green area) by applying 50 M [Ca]nd to the LC 

model. The red exponential curve was fitted by the least squares method. The blue exponential curve 

was drawn using the koc of single RyR for comparison. B: Red circles illustrate data points of  

obtained by applying the least squares method to the ensemble mean at various [Ca]nd indicated on 

the abscissa of logarithmic scale. The continuous curve was drawn by the empirical formula of Eq. 

S189 with l = 0.74. Red symbols are derived from the couplon of LC model, and black symbols are 

from that of HuVEC model.  

 

Comparison of activation and deactivation rates of a RyR or couplon among different 

models 

 In the SJ, LC, SM(toy) and our HuVEC models, the gating of a single RyR is described using the two-

state kinetic scheme, and the rate constants are based on the single channel recordings in the planar 

lipid bilayer method. The activation rates are all dependent on [Ca2+] with a cooperativity factor (nH) 

of 2 ~ 4. In our model, the activation rate of a single RyR (red line) was determined by adjusting the 

rate used in SM model (blue line).  
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Table S6 Comparisons among mathematical descriptions of the couplon activation 

 Spark CICR model Whole cell CICR model 

SJ model  SM ‘toy’ model HuVEC model Hinch model 

Activation rate 
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next compartment blk n.c jnc blk 

ko, kc; opening and closing rate constants of a RyR, CFopen and CFclose; cooperative factor for open and close 

rate, i; single RyR channel current, (sloc0+Casr); the SR Ca2+-content factor, pC; probability of closed state, 

NRyR; number of RyRs within a couplon, l; correcting factor, ss; subspace, dc; dyadic cleft, ds; dyadic space, 

K; a half saturation [Ca2+], 
XJ ; Ca2+ flux via X per unit volume and n.c.; not concerned. No empirical 

equations are given in LC model. 

 

 

Fig. S5. Kinetics of RyRs  

 Relationships between [Ca2+] and open 

(Fig. S5A) and close rates (Fig. S5B), in 

five model studies are shown in each panel 

respectively. Black: LC model, Blue: SM 

model, Lime: Hinch model, Chocolate: SJ 

model, Red: HuVEC model. A [Ca2+]SRrl 

of 500 M was used to calculate rate of 

activation if necessary.  
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Fig. S6. Stochastic simulation of 

20,000 couplons activity and its life 

time histogram (Ca00=0.2uM, 

SRCa=0.6mM, Ca0R=0.15mM). Top) 

red vertical lines show 203 open 

events of 20,000 couplons occurred in 

1000 ms. Bottom: open and close life 

time histogram obtained after 20,000 

sweeps of stochastic simulations 

including 196 open events show 

smoothed time courses of the 

activation and inactivation of 

couplons. 

 

Implementation of ‘blink space (bs)’ in HuVEC model 

In order to examine the involvement of ‘blinks’ in determining the time course of CICR 

extinction, we newly assume a ‘blink space’ (bs) under the junctional SR membrane supporting the 

couplon as schematically shown in Fig. S7. The parameters in this figure are denoted in analogy to 

the HuVEC (Hinch) dyadic space model. 

 

Fig. S7. Schematic representation of the dyadic model. JR; Ca2+ permeability of single couplon 

(m3/ms), gDbs; Ca2+ flux rate from SRrl to bs (m3/ms), gDnd; Ca2+ flux rate from nd to jnc (m3/ms), 

Cabs; Ca2+ concentration in bs (mM), CaSRrl; Ca2+ concentration in SRrl (mM).  

 

According to the simultaneous recording of both sparks and blinks (39-41) the time course of a blink 

is nearly a mirror image of a spark, indicating that the depletion and the replenishment of Ca2+ in bs 

is quite rapid. Since each pair of spark-blink of a similar time course is evoked by the same Ca2+ flux 

via a couplon, the balance between the Volbs and gDbs should be comparable to that between Volnd 

and gDnd. If so, [Ca2+]bs (Cabs) might be given as an instantaneous function of JR and gDbs in analogy 

to [Ca2+]ds in the Hinch formalism. The rate of change in Cabs is, 
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If a rapid equilibrium of Ca2+ diffusion is assumed within the blink space in Eq. S190, namely, dCabs/dt 

= 0 

)()( bsSRrlbsndbsR CaCagDCaCaJ   .                                  (Eq. S191) 

Eq. S191 is comparable to the original Hinch algorithm for the instantaneous balance of Ca2+ fluxes 

at nd. 

)()( 00CaCagDCaCaJ ndndndbsR                                      (Eq. S192) 

From Eqs. S191 & S192, Cabs and Cand is given as an instantaneous function of Ca00 and CaSRrl. For 

example, when a couplon is open and LCC is closed, Cabs and Cand are determined by Eqs. S193 & 

S194. 
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and 
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J
f   .                                                             (Eq. S196) 

When the couplon is closed, 

SRrlbs CaCa   .                                                           (Eq. S197) 

Namely, Cabs switches between these two concentrations according to the open-close transitions of 

the couplon. This instantaneous relationship of Cabs can be readily applied to the compound state 

transition model of CaRU (36). When bsgD , then SRrlbs CaCa   and Rnd CaCa 0  as in the 

original HuVEC model, and when 0bsgD , then 00CaCaCa ndbs  . 
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Using the dyadic model newly developed as above, the relationship between the degree of local SR 

depletion and the activation and deactivation of a couplon, (krco and kroc), was determined by varying 

the ratio of gDbs and gDnd (rbs = gDbs / gDnd) at various levels of CaSRrl (Fig. S8).  

 

Fig. S8. Rate constants calculated using the dyadic model at various rbs (Ca00=2 M, 

[Ca2+]SRrl=0.1~5 mM). [Ca2+]SRrl was changed to various levels from 0.1 to 5 mM in increments of 

0.2 mM. kroc and krco was colored in a gradient manner according to [Ca2+]SRrl  (blue at [Ca2+]SRrl = 

0.1mM  and red at [Ca2+]SRrl = 5 mM).  

 

Considering [Ca2+]SRrl = ~0.6 mM at resting condition, it may be concluded that a single couplon 

could exhibit a train of open events at higher [Ca2+]SRrl, which would be achieved by increasing Ca2+ 

flux rate from SRrl to bs (gDbs) or SR Ca2+ loading by, for example, pharmacological treatment.  

 

Frequency-dependency of HuVEC model 

  For validation of HuVEC model, the frequency-dependencies of [Na+]cyt, APD90, [Ca2+]SRrl and the 

peak amplitude of Ca2+ transient were examined (Fig. S9). At every stimulus frequency, all these 

measurements reached stable values, and responses were completely reversible after returning to the 

control frequency. The APD90 smoothly decreased with increasing stimulation rate as reported in both 

experimental and simulation studies (21, 24, 42-44). This decrease of APD90 was largely due to the 

increase in outward INaK amplitude induced by the accumulation of [Na+]cyt with increasing frequency of 

AP generation. The decrease in [Ca2+]SRrl at the lower stimulus frequency was due to the Ca2+ leak from 

SR via basal openings of RyRs during diastole, while the decrease with increasing frequency above 1 Hz 

was due to incomplete replenishment of SR with Ca2+ during the shortened diastolic duration. 

Nevertheless, the peak of [Ca2+]blk transient was increased with increasing frequency. This is because the 

diastolic level of [Ca2+]blk was elevated, for example from the control 0.064 M to 0.16 M at 2.5 Hz. 

The shortening of APD was well correlated with the increase in INa/K with increasing [Na+]cyt. These 

findings are in line with the GPB and ORd models. 
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Fig. S9. Frequency-dependency of the HuVEC model 

A: [Na+]cyt, B: APD90, C: [Ca2+]SRrl, D: peak [Ca2+]blk magnitude of isotonic Fb at 6 mN/mm2. The ion 

concentrations were measured at the end of diastole.  
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Initial set of time-dependent variables of HuVEC model at a 

standard CL of 1000 ms 

 

Vm = -91.4466885079348    

TnChCa = 0.110742559707052  

CaMCa = 0.000228581865602447 

bufferSRCa = 0.00172960014640511 

Lb_jnc = 0.0218215322629436 

Lb_iz = 0.0075621764602356 

Hb_jnc = 0.185094540066232 

Hb_iz = 0.0769149150028914 

 

Nai = 6.66894310282034                      

Ki = 139.238265011042   

Catot_jnc = 0.207176351449979    

Catot_iz = 0.084640522722006 

Catot_blk = 0.11279654524634 

Ca_SRup = 0.761077662687456 

Catot_SRrl = 2.21876221622152 

 

O_TM = 0.000000706725155695262   

I2_TM = 0.0117704053067285 

Is_TM = 0.304002781414015 

 

O_LSM = 0.00000295214591324261    

I1_LSM = 0.00254273877063925 

I2_LSM = 0.0118261382165599 

Is_LSM = 0.303220346353844 

 

Yco_iz = 0.992251726297519   

Yoc_iz = 0.000000024556270151713 

Yoo_iz = 0.00000314564543512061 

Yco_blk = 0.992424981547859 

Yoc_blk = 0.0000000240070147854924 

Yoo_blk = 0.00000314619469048683 

 

Yooo = 0.00000172489315884865            

Yooc = 0.00000142034754677507 
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Ycoo = 0.0000138422676498755 

Ycoc = 0.992110534408681 

Ycco = 0.0000000953816272498217 

Yoco = 0.00000000000156949238162028 

Yocc = 0.0000000249594301562175 

 

paraxrF = 0.00000486210633393005 

paraxrS = 0.437041249050081 

 

paraxs1_iz = 0.277482694590328      

paraxs2_iz = 0.000131110342877451 

paraxs1_blk = 0.277482694590328 

paraxs2_blk = 0.000131110342877451 

 

a_IKto = 0.000793627635934239 

y1_IKto = 0.999756080468878 

y2_IKto = 0.575995954010486 

 

Pbspm = 0.594875991179992  

 

E1NCX_iz = 0.238718640001014    

I1NCX_iz = 0.13771129457898 

I2NCX_iz = 0.622892868847556 

E1NCX_blk = 0.111872123711613 

I1NCX_blk = 0.203023555446362 

I2NCX_blk = 0.684869019924837 

 

P1_6_NaK = 0.435289193632868       

P7_NaK = 0.0831770174499825 

P8_13_NaK = 0.281082409575779 

 

halfSL = 1.09840500012898       

Fb = 0.0502092089156129 

Fp = 4.94926096641491 

TSCa3 = 0.00899891910620064 

TSCa3W = 0.000369547640656701 

TSCa3S = 0.000153834503967436 

TSS = 0.000876347322180234 

TSW = 0.000492054058977473 

hw = 0.000100147615113241 

hp =  0.00600014761511324 
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ATPt_cyt = 6.67701543987464 

ADPt_cyt = 0.0227671477707 

Pi_cyt = 0.381130087573153 

PCr_cyt = 13.9261301893242 
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