Supplementary Information

Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

Nadine Lang †, Kai Skodzek †, Sebastian Hurst †, Astrid Mainka †, Julian Steinwachs†, Julia Schneider†, Katerina E. Aifantis ‡, Ben Fabry †

[†] Department of Physics, University of Erlangen- Nuremberg, Germany

‡ Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AR, USA

Collagen degradation after glutaraldehyde treatment

Collagen can be proteolytically degraded through matrix metalloproteinase (MMP) enzymes secreted by cells. The speed of collagen degradation in response to collagenase (2 mg/ml collagenase type IA, Sigma-Aldrich, Germany) was measured in gels that were treated or not treated with glutaraldehyde. A gel volume of 185µm x 185µm x 50µm (pixel size 361nm x 361nm x 370nm) was continuously imaged after addition of collagenase with confocal reflection microscopy using a 20x water immersion objective with 1.0 NA. The total reflected light intensity integrated over the imaged stack was taken as a measure of collagen fiber density. Our data show that the degradation rate of glutaraldehyde-treated gels is greatly reduced. The total intensity did not fall below 40% of its value before collagenase addition, because the dissolved collagen fibers formed aggregates that contributed to the reflection signal.

Figure S1 Collagenase digestion of control and glutaraldehyde-treated gels. (a) Integrated reflected light intensity of image stacks versus time (mean \pm se of 3 different gels). At t=0, collagenase was added to the gels. Every 40 s, an image stack was recorded over a volume of 185μ m× 185μ m× 50μ m. After collagenase treatment, collagen fibers disappeared faster in control gels (black line) compared to glutaraldehyde-treated gels (red line). (b-g) Confocal reflected microscopy images of control gels (top row) and glutaraldehyde-treated gels (bottom row) at different time points after collagenase addition. Scale bar is 20 μ m.

Fluidity of collagen gels from magnetic tweezer measurements

During the application of force steps from 1 to 10nN, the displacement of beads coupled to collagen fibers can be fitted with a power law [1, 2]. The power-law exponent β defines the dissipative properties of the material, where 0 corresponds to an elastic solid and 1 to a viscous fluid. Untreated collagen gels showed predominantly elastic behavior ($\beta \sim 0.1$), which was further enhanced by glutaraldehyde treatment ($\beta < 0.05$).

Figure S2 Power-law exponent versus applied force of untreated (a) and glutaraldehyde-treated (b) collagen gels measured from creep-experiments with magnetic tweezers.

References

[1] Kollmannsberger P, Fabry B. High-Force Magnetic Tweezers with Force Feedback for Biological Applications. Rev Sci Instrum. 2007;78:114301-1-6.

[2] Lautscham LA, Lin CY, Auernheimer V, Naumann CA, Goldmann WH, Fabry B. Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials. 2014;35:3198-207.