1	
2	
3	
4	
5	
6	SUPPLEMENTARY MATERIAL
7	
8	to
9	
10	An Affibody-adalimumab Hybrid Blocks
11	Combined IL-6 and TNF-triggered Serum
12	Amyloid A Secretion In Vivo
13	
14	
15	
16	by
17 18	
10	Feifan Yu <i>et al.</i>
20	
21	
22	
23	
24 25	
26	
-	

1		Supplementary material	
2			
3			
4			
			Page
	S 1	Selection conditions.	3
	S 2	Initial <i>in vivo</i> study of the $Z_{IL-6_{13}}$ affibody in an acute	4

	SAA model.	
S 3	Construction and production of AffiMabs.	6
S4	Determination of affinities for two AffiMabs, $Z_{IL-6_{13}}$ or adalimumab to IL-6 and TNF.	9
S5	Comparison of the TNF blocking capabilities of Z_{IL-6_13} -HC _{Ada} and Z_{IL-6_13} -LC _{Ada} at a high TNF concentration.	10

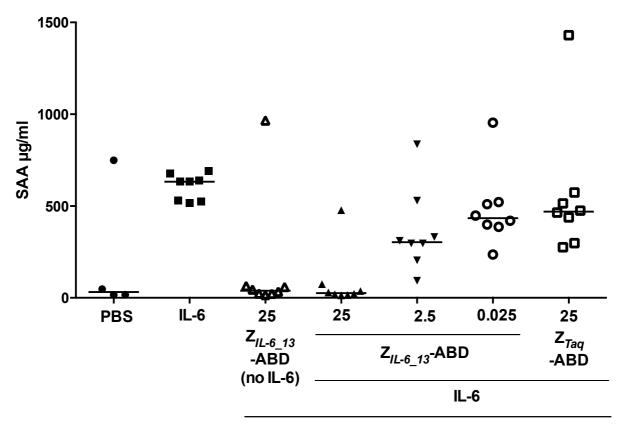
1 S1: Selection conditions

2

The IL-6 binding affibody proteins were selected from a combinatorial library displayed on bacteriophage (phagemids). During the selection campaign that was performed for four cycles, biotinylated human IL-6 target protein (in one track also murine IL-6 was used for one cycle^(b)) was used in deceasing concentrations, and the number of washes after capture of phagemid-target complexes on streptavidin beads were successively increased during the selection process. Selection parameters used are summarized in the Table S1 below.

9

10 **Table S1. Selection conditions.**


	Track 1	Track 2	Track 3
Carla	Target concentration (nM) /	Target concentration (nM)	Target concentration (nM)
Cycle	No. of washes	/ No. of washes	/ No. of washes
1	100/2	100/2	100/2
2	50/5	10/5	100 ^(b) /4
3	25/6	2/8	25
4	10/12	0.5/15	0.5

S2: Initial *in vivo* study of the Z_{IL-6 13} affibody in an acute SAA model

2

3 An initial study of the anti-arthritic efficacy of the $Z_{IL-6_{-13}}$ variant was performed in vivo using a mouse 4 model for IL-6 triggered Serum Amyloid A (SAA) protein release. Five groups of Balb/c mice (n=7) 5 were given either none, 0.025, 2.5 or 25 mg/kg body weight of an Z_{IL-6_13}-ABD fusion protein or 25 6 mg/kg of a control affibody-ABD fusion protein (Z_{Tag}-ABD) subcutaneously nine hours before an 7 injection of 5 µg/kg body weight of hIL-6. After an additional 22 hours the levels of SAA protein were 8 measured by ELISA (Tridelta) according to the manufacturer's instructions and compared between the 9 different groups. In brief, diluted serum samples were added to SAA-precoated plates together with 10 anti-SAA-HRP. The plates were incubated for 1 hour and then washed four times. TMB substrate was 11 added for 20 min and the reaction was stopped with 2 M H₂SO₄. The absorbance was measured at 450 12 nm using a microplate reader (Victor3, Perkin Elmer). In animals receiving either nothing of the Z_{IL} 13 6 13-ABD fusion or 25 mg/kg of the control affibody-ABD fusion, SAA protein levels increased to 14 levels of approximately 500-600 µg/ml blood compared to controls given only PBS instead of hIL-6 15 where levels were below 40 µg/ml. In animals given Z_{IL-6 13}-ABD fusion protein, a clear effect was 16 seen as significantly lower SAA protein levels were measured in a dose-dependent manner (Fig. S2). For the group given the highest dose of Z_{IL-6 13}-ABD fusion (25 mg/kg body weight), SAA protein 17 18 levels were as low as for animals given no hIL-6 injection. A control group receiving the highest Z_{IL} 6_13-ABD fusion (25 mg/kg body weight), but no IL-6, did not show any detectable SAA. 19

- 20 21
- 22

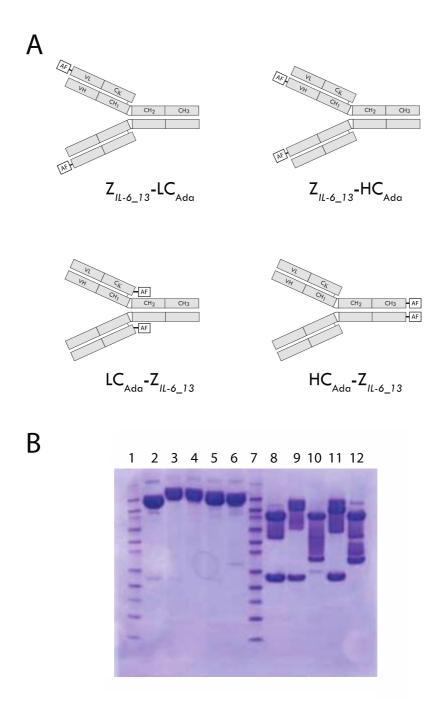

Concentrations of Z-ABD (mg/kg)

Figure S2. Results from an acute SAA model study in mice for the Z_{IL-6_13} -ABD fusion protein. Five groups of Balb/c mice (n=7) were given either 25, 2.5, 0.025 or none mg/kg body weight of an Z_{IL-6_13} -ABD fusion protein or 25 mg/kg of a control Z_{Taq} -ABD fusion protein subcutaneously nine hours before an injection of 5 µg/kg body weight of hIL-6. After an additional 22 hours the levels of SAA protein were measured by ELISA.

1 S3: Construction and production of AffiMabs

2

Four different Z_{IL-6_13}-adalimumab fusions ("AffiMabs") were designed and produced. The anti-IL-6 3 4 Z_{IL-6_13} affibody molecule (AF) moiety was genetically fused, via flexible (GGGGS)₃ linkers, to both the N-termina of the heavy (HC) and light (LC) chains of adalimumab, resulting in the constructs 5 6 Z_{IL-6 13}-HC_{Ada} and Z_{IL-6 13}-LC_{Ada}, respectively, and to the C-termina of the same chains, resulting in 7 the constructs HC_{Ada}-Z_{IL-6 13} and LC_{Ada}-Z_{IL-6 13}, respectively (Fig. S3A). Production was performed 8 in CHO cells using standard procedures and the AffiMabs purified from the culture supernatants via 9 Protein A-affinity chromatography. The quality and purity of the AffiMabs was analyzed by SDS-10 PAGE under both non-reduced and reduced conditions (Fig. S3B).

7

8

1

Figure S3. Design and characterization of the four Affimabs. (A): Schematic drawing of the design of the four AffiMab contructs. The designation "AF" depicts the anti-IL-6 affibody variant $Z_{IL-6_{-13}}$ sequence. The $Z_{IL-6_{-13}}$ affibody sequence was in all constructs genetically linked to anti-TNF mAb adalimumab heavy (HC_{Ada}) or light chains (LC_{Ada}) sequences via a 15 residue (GGGGS)₃-linker, positioned either C-terminally (in constructs $Z_{IL-6_{-13}}$ -LC_{Ada} and $Z_{IL-6_{-13}}$ -HC_{Ada}) or N-terminally (in constructs LC_{Ada}- $Z_{IL-6_{-13}}$ and HC_{Ada}-

1	$Z_{IL-6_{-13}}$) of the affibody $Z_{IL-6_{-13}}$ sequence. (B): SDS-PAGE analysis (12% polyacrylamide
2	gel) of CHO cell produced and protein A affinity purified adalimumab and AffiMab
3	constructs: Lane 1: Marker proteins; lane 2: adalimumab (non-reduced); lane 3: AffiMab
4	$Z_{IL-6_{13}}$ -HC _{Ada} (non-reduced); lane 4: AffiMab $Z_{IL-6_{13}}$ -LC _{Ada} (non-reduced); lane 5:
5	AffiMab HC _{Ada} -Z _{IL-6_13} (non-reduced); lane 6: Affimab LC _{Ada} -Z _{IL-6_13} (non-reduced); lane
6	7: Marker proteins; lane 8: adalimumab (reduced); lane 9: AffiMab Z _{IL-6_13} -HC _{Ada}
7	(reduced); lane 10: AffiMab Z _{IL-6_13} -LC _{Ada} (reduced); lane 11: AffiMab HC _{Ada} -Z _{IL-6_13}
8	(reduced) and lane 12: AffiMab LC_{Ada} - $Z_{IL-6_{13}}$ (reduced).

1 S4: Determination of affinities for two AffiMabs, Z_{*IL-6_13*} or adalimumab to IL-6 2 and TNF.

3

4 The affinities for IL-6 and TNF were determined using proteins and conditions as described in the

- 5 main text (see Materials and Methods section). In the Table S4 below are summarized the measured
- 6 association rate constants, dissociation rate constants and calculated dissociation constants
- 7 interactions between the indicated constructs and IL-6 and TNF, respectively.
- 8
- 9

10 Table S4. Summary of affinity determinations. Summary of measured association rate 11 constants, dissociation rate constants and calculated dissociation constants interactions between 12 the indicated constructs and IL-6 and TNF, respectively.

IL-6			
	$k_a (M^{-1} s^{-1})$	$\mathbf{k_d} (\mathbf{s^{-1}})$	$\mathbf{K}_{\mathbf{D}}\left(\mathbf{M}\right)$
Z _{IL-6_13} -HC _{Ada}	$3.16 \pm 0.02 \times 10^5$	$2.28 \pm 0.30 \times 10^{-4}$	$7.19 \pm 0.80 \times 10^{-10}$
LC_{Ada} - $Z_{IL-6_{13}}$	$1.40 \pm 0.03 \times 10^5$	$1.30 \pm 0.20 \times 10^{-4}$	$9.25 \pm 1.20 \times 10^{-10}$
His ₆ - Z _{<i>IL</i>-6_13}	$3.07 \pm 0.05 \times 10^5$	$1.53 \pm 0.10 \times 10^{-4}$	$4.97 \pm 0.30 \times 10^{-10}$

TNF			
	$k_a (M^{-1} s^{-1})$	$\mathbf{k_d} \ (\mathbf{s^{-1}})$	KD (M)
Z _{IL-6_13} -HC _{Ada}	$6.21 \pm 0.04 \times 10^5$	$1.05 \pm 0.00 \times 10^{-4}$	$1.70 \pm 0.02 \times 10^{-10}$
LC_{Ada} - $Z_{IL-6_{13}}$	$8.42 \pm 0.05 \times 10^5$	$1.10 \pm 0.02 \times 10^{-4}$	$1.31 \pm 0.03 \times 10^{-10}$
adalimumab	$7.41 \pm 0.06 \times 10^5$	$1.60 \pm 0.10 \times 10^{-4}$	$2.16 \pm 0.01 \times 10^{-10}$

S5: Comparison of the TNF blocking capabilities of Z_{*IL*-6_13}-HC_{Ada} and Z_{*IL*-6_13}-LC_{Ada} at a high TNF concentration.

3

4 The two AffiMab constructs $Z_{hIL-6_{-13}}$ -HC_{Ada} and $Z_{hIL-6_{-13}}$ -LC_{Ada} were compared to adalimumab in a 5 TF-1 cell assay for their capacities to block the effect of the relatively high TNF concentration of 6 71.5 pM. Cells were cultured in RPMI1640 with L-glut (Lonza) supplemented with 10% FCS 7 (Gibco), Pen-Strep (Lonza) and 2 ng/ml rhGM-CSF (RnD Systems). Prior to analysis, cells were 8 washed twice in RPMI1640 in the absence of rhGM-CSF. Cells were dispensed into 96 well flat bottomed plates at a density of 4×10^4 /cells per well. In separate plates serial dilutions of the 9 10 AffiMab molecules or adalimumab were incubated in the presence of a fixed concentration of TNF 1.2 ng/ml (0.072 nM). The pre-mixed samples of AffiMab molecules or adalimumab and TNF were 11 12 then transferred to wells containing TF-1 cells. The plates were incubated for 72 hours at 37°C in a humidified 5% CO₂ atmosphere. During the last four hours of incubation 10 µl of CCK-8 (Fluka, 13 14 Sigma Aldrich) was added per well to determine the number of proliferating cells. The absorbance 15 was measured at 450 nm using a microplate reader. The experiment showed that both AffiMabs were 16 capable of effective blocking of the growth stimulating TNF signal, but that the Z_{IL-6 13}-HC_{Ada} 17 construct was more efficient than the Z_{IL-6_13}-LC_{Ada} construct with an effect in parity with 18 adalimumab included as reference (Fig. S5).

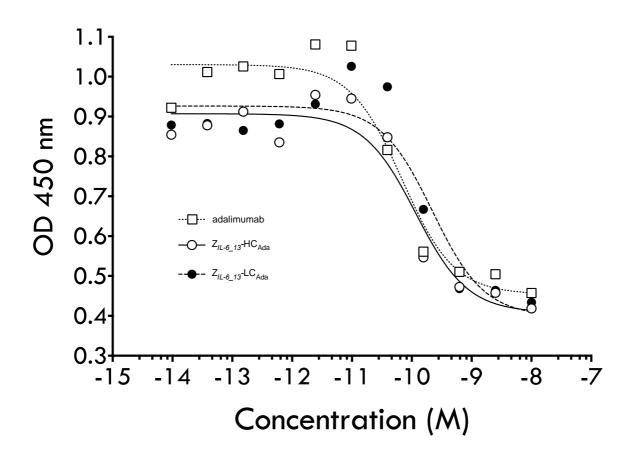


Figure S5. Comparison of Z_{IL-6_13}-HC_{Ada}, Z_{IL-6_13}-LC_{Ada} AffiMabs and adalimumab
for blocking of a high TNF concentration. Results from an analysis of the capability of
Z_{IL-6_13}-HC_{Ada}, Z_{IL-6_13}-LC_{Ada} AffiMabs or adalimumab to inhibit the growth of TNF
stimulated TF-1 cells. The TNF concentration was 71.5 pM.