Supporting Information

Studies on the Catalytic Domains of Multiple JmjC Oxygenases Using Peptide Substrates

Ms Sophie T. Williams⁺,¹ Dr Louise J. Walport⁺,¹ Dr Richard J. Hopkinson⁺,¹ Miss Sarah K. Madden,¹ Dr Rasheduzzaman Chowdhury,¹ Prof. Christopher J. Schofield FRS¹ and Dr Akane Kawamura^{1,2}*

¹ Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.

² Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.

⁺These authors have contributed equally to the work

* Correspondence to Dr Akane Kawamura, email: akane.kawamura@chem.ox.ac.uk.

Figures and Tables.

Note: negative data is not shown for all methylation marks for all enzymes, but is included for enzymes where there have been discrepancies in the literature.

Table S1. Peptide sequences used in MALDI and FDH activity assays. Residues which are enzymatically oxidised (hydroxylated or demethylated) are shown in bold. All peptides were purchased from Alta Bioscience or synthesised in house on a CSBio 336X solid phase peptide synthesiser. Ahx is aminohexanoic acid. All Alta Bioscience peptides have a *C*-terminal amide. Small differences in the masses of peptides are observed in the MALDI-TOF spectra due to calibration. Oxidation (+16 Da) of some biotinylated peptides was observed in the mass spectra in some instances.

Listene Merile /		Average	
Brotoin	Amino Acid Sequence	Mass /	Source
Frotein		Da	
H3K4	Biotin-Ahx-ART Kme1 QTARKSTGGKAPRKQLA	2607.5	Alta Bioscience
H3K4	Biotin- Ahx -ART Kme2 QTARKSTGGKAPRKQLA	2621.5	Alta Bioscience
H3K4	Biotin- Ahx -ART Kme3 QTARKSTGGKAPRKQLA	2635.5	Alta Bioscience
H3K9	Biotin- Ahx -ARTKQTAR Kme1 STGGKAPRKQLA	2607.5	Alta Bioscience
H3K9	Biotin- Ahx -ARTKQTAR Kme2 STGGKAPRKQLA	2621.5	Alta Bioscience
H3K9	Biotin- Ahx -ARTKQTAR Kme3 STGGKAPRKQLA	2635.5	Alta Bioscience
H3K27	Biotin- Ahx -KAPRKQLATKAAR Kme1 SAPATGG	2461.3	Alta Bioscience
H3K27	Biotin- Ahx -KAPRKQLATKAAR Kme2 SAPATGG	2475.3	Alta Bioscience
H3K27	Biotin- Ahx -KAPRKQLATKAAR Kme3 SAPATGG	2489.3	Alta Bioscience
H3K36	Biotin- Ahx -SAPATGGV Kme1 KPHRYRPGTVAL	2516.4	Alta Bioscience
H3K36	Biotin- Ahx -SAPATGGV Kme2 KPHRYRPGTVAL	2531.4	Alta Bioscience
H3K36	Biotin- Ahx -SAPATGGV Kme3 KPHRYRPGTVAL	2545.4	Alta Bioscience
H3K4	ART Kme3 QTARKSTGGKAPRKQLA	2297.6	In house
H3K9	ARTKQTAR Kme3 STGGKAPRKQLA	2297.6	In house
H3K27	KAPRKQLATKAAR Kme3 SAPATGG	2151.1	In house
H3K36	SAPATGGV Kme3 KPHRYRPGTVAL	2206.5	In house
Rpl27a	GRGNAGGL H HHRINFDKYHP	2281.1	In house
Rpl8	NPVEHPFGGG N HQHIGKPST	2110.3	In house
Synthetic ankyrin	HLEVVKLLLEAGADV N AQDK	2161.2	In house

Table S2. Demethylation assay conditions.

Entymo	[2OG] /	[Ascorbate] /	[Fe"] /	Buffer Conditions	
Enzyme	μΜ	μM	μΜ		
KDM2A	200	100	10	50 mM HEPES pH 7.5	
KDM3A	200	100	10	50 mM HEPES pH 7.5, 150 mM NaCl	
KDM4A-E	200	100	10	50 mM HEPES pH 7.5	
KDM5C	200	100	10	50 mM HEPES pH 7.5	
KDM6A	200	100	10	50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol	
KDM6B	200	100	10	50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol	
KDM7A	200	100	10	50 mM HEPES pH 7.5	
	200	100 10		00 100 10 50 mM HEPES pH 7.5, 150 mM	50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol,
010000				1 mM DTT	
MINA53 200 100		100	10	50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol,	
1111111100	200	100		1 mM DTT	
NO66 200 100		100	10	50 mM HEPES pH 7.5, 150 mM NaCl, 5% glycerol,	
				1 mM DTT	
FIH	200	100	10	50 mM Tris pH 7.5, 150 mM NaCl	

Table S3. Crystallographic data processing and refinement statistics. Sample composition of

1(KDM4A):5(NOG):peptide(10) was used, with KDM4A¹ at 10mg/ml.

Measurement	KDM4A + 20 mer H3K27me3 Peptide	KDM4A + 5 mer H3K27me3 Peptide		
	PDB ID: 4V2W	PDB ID: 4V2V		
Crystallization and cryo-				
protection				
Crystallization conditions	0.02 M sodium/potassium phosphate,	0.2 M ammonium chloride,		
	0.1 M Bis Tris propane pH 7.5,	20 % w/v PEG 3350		
	20 % w/v PEG 3350			
Vapour diffusion	Sitting drop (300 nl),	Sitting drop (300 nl),		
conditions	protein-to-well ratio, 2:1, 277K	protein-to-well ratio, 1:1, 277K		
Cryo-protection (%	25% glycerol	25% glycerol		
supplemented with well				
condition)				
Data Collection				
Data processing	MOSFLM ² , SCALA ³	MOSFLM ² , SCALA ³		
Space Group	P21212	P21212		
Cell dimensions a,b,c (Å)	100.66	101.02		
	149.73	149.91		
	57.50	57.38		
Resolution (Å)	60.07 – 1.81 (1.91 – 1.81)*	53.59 – 2.00 (2.11 – 2.00)*		
No. of unique reflections	79999 (11459)*	59803 (8616)*		
Completeness (%)	99.9 (99.3)*	100 (100)*		
Redundancy	6.9 (6.2)*	5.8 (5.5)*		
R _{sym} **	0.098 (0.889)*	0.088 (0.786)*		
Mean I/σ(I)	9.9 (2.0)*	11.0 (2.2)*		
		A		
Refinement	PHENIX	PHENIX		
R _{factor}	0.1724	0.1860		
R _{free}	0.2082	0.2208		
R.m.s. deviation				
Bond length, Å	0.01	0.008		
Bond angle, °	1.32	1.18		

*Highest resolution shell shown in parenthesis.

** $R_{sym} = \sum |I-<I>|/\sum I$, where *I* is the intensity of an individual measurement and <*I*> is the average intensity from multiple observations.

Figure S1. Representative MALDI MS showing KDM2A-catalysed demethylation of H3 fragment peptides

methylated at K36. Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S2. Representative MALDI MS showing KDM3A-catalysed demethylation of H3 fragment peptides methylated at K9. Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S3. Representative MALDI MS showing KDM5C-catalysed demethylation of H3 fragment peptides

methylated at K4. Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S4. Representative MALDI MS showing KDM6A (A) and B (B) catalysed demethylation of H3

fragment peptides methylated at K27. Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S5. Domain organisation of (A) KDM4A and (B) KDM7A with (C) Western-Blot analysis of FLAG-KDM4A₁₋₁₀₆₄. In figures A and B, the upper figure shows the full length protein domain structure (as used for KDM4A), and below shows truncated domain structure in the constructs used for *in vitro* studies (as used for KDM4A and KDM7A). Figure C shows a Western-Blot of immunoprecipitated FLAG-KDM4A 1-1064 purified from HEK293T probed using anti-FLAG antibody. Predicted 3xFLAG-KDM4A weight is 123.4 kDa.

Figure S6. Representative MALDI MS showing KDM7A catalysed demethylation of H3 fragment peptides

methylated at K9 and K27.⁵ Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S7. Representative MALDI MS showing the absence of demethylation of histone peptides by

MINA53.⁶ Peptide only assay (red) overlaid with enzyme reaction (black).

Figure S8. Representative MALDI MS showing the absence of demethylation of histone peptides by NO66.⁶

Peptide only assay (red) overlaid with enzyme reaction (black).

HLEVVKLLLEAGADV**N**AQDK Synthetic ankyrin

Figure S9. Hydroxylation of synthetic ankyrin peptide by FIH.⁷ Peptide only assay (red) shown with enzyme reaction (black).

Peptide only assay (red) shown with enzyme reaction (black).

Figure S11. Representative MALDI MS showing KDM4A-catalysed demethylation of H3 fragment peptides methylated at K4, K9, K27 and K36. Peptide only assay (red) overlaid with enzyme reaction (black).

2530

2515 2520

2510

2515

2505

2510

2500

2520 2525 2530 2535

2540 2545

Figure S12. Representative MALDI MS showing KDM4B-catalysed demethylation of H3 fragment peptides methylated t K9, K27 and K36. Peptide only assay (red) overlaid with enzyme reaction (black).

Biotin-Ahx-KAPRKQLATKAARKme1SAPATGG H3 K27

Biotin-Ahx-SAPATGGVKme1KPHRYRPGTVAL H3 K36

Biotin-Ahx-ARTKme2QTARKSTGGKAPRKQLA

Biotin-Ahx-ARTKQTARKme2STGGKAPRKQLA

Biotin-Ahx-KAPRKQLATKAARKme2SAPATGG H3 K27

2485 2470 2475

Biotin-Ahx-SAPATGGVKme2KPHRYRPGTVAL

Biotin-Ahx-ARTKQTARKme3STGGKAPRKQLA H3 K9

2615 2620 2625 2630 2635

Biotin-Ahx-KAPRKQLATKAARKme3SAPATGG H3 K27

Biotin-Ahx-SAPATGGVKme3KPHRYRPGTVAL H3 K36

2495 2500 2505 2510 251

Figure S13. Representative MALDI MS showing KDM4C-catalysed demethylation of H3 fragment peptides

methylated at K9, K27 and K3. Peptide only assay (red) overlaid with enzyme reaction (black).

2510 2515 Biotin-Ahx-ARTKme3QTARKSTGGKAPRKQLA

Figure S14. Representative MALDI MS showing KDM4D-catalysed demethylation of H3 fragment peptides

methylated at K9 and K27. Peptide only assay (red) overlaid with enzyme reaction (black).

Biotin-Ahx-ARTKme1QTARKSTGGKAPRKQLA H3 K4

2610

Biotin-Ahx-ARTKQTARKme1STGGKAPRKQLA H3 K9 -14

Biotin-Ahx-KAPRKQLATKAARKme1SAPATGG H3 K27

Biotin-Ahx-SAPATGGVKme1KPHRYRPGTVAL

H3 K36

H3 K4

Biotin-Ahx-ARTKQTARKme2STGGKAPRKQLA -14 H3 K9 -14

Biotin-Ahx-KAPRKQLATKAARKme2SAPATGG H3 K27

Biotin-Ahx-SAPATGGVKme2KPHRYRPGTVAL H3 K36

Biotin-Ahx-ARTKQTARKme3STGGKAPRKQLA

2605 2610

Biotin-Ahx-KAPRKQLATKAARKme3SAPATGG H3 K27

Biotin-Ahx-SAPATGGVKme3KPHRYRPGTVAL H3 K36

Figure S15. Representative MALDI MS showing KDM4E-catalysed demethylation of H3 fragment peptides

methylated at K9 and K27. Peptide only assay (red) overlaid with enzyme reaction (black).

Biotin-Ahx-ARTKme2QTARKSTGGKAPRKQLA Biotin-Ahx-ARTKme3QTARKSTGGKAPRKQLA H3 K4

Figure S16. Michaelis-Menten curves for KDM4A with histone H3 trimethylated peptides. Initial rates over a range of peptide concentrations were determined using the FDH assay with saturating 2OG concentrations of 200 μ M.

Figure S17. Competition for demethylation by KDM4A between H3 K27me3 and (A) K9me3 or (B) K36me3 in a 1:1 concentration ratio, as analysed by MALDI MS.

Figure S18. View from an X-ray crystal structure of the catalytic domain of KDM4A in complex with an H3K27me3 fragment peptide overlaid with H3₃₀₋₄₂K36me3 (PDB ID: 2YBS). Nickel (Ni, green) and N-oxalylglycine (NOG, grey) substitute for iron (II) and 2OG, respectively. Active site residues from PDB 4V2W are shown in yellow (Tyr177, His188, Glu190, His276, Asp290). The position of the K27me3 residue of the fragment peptide correlates closely with that reported for H3K36me3, although the surrounding peptide sequence differs significantly (see peptide sequences in Figure 4).

Figure S19. View from an X-ray crystal structure of KDM4A complexed with a shorter 5 residue H3₁₀₋₃₅ **K27me3 peptide (purple/blue).** The H3₂₄₋₂₉K27 5 residue peptide (purple) is shown overlaid with the H3₁₀₋₃₅K27 25 residue peptide (green). Nickel (Ni, green) and N-oxalylglycine (NOG, grey) substitute for iron (II) and 2OG, respectively. Active site residues from PDB 4V2V are shown in yellow (Tyr177, His188, Glu190, His276, Asp290).

References

1. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 2007; 448:87-91.

2. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica Section D, Biological crystallography 2011; 67:271-81.

3. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al. Overview of the CCP4 suite and current developments. Acta crystallographica Section D, Biological crystallography 2011; 67:235-42.

4. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica Section D, Biological crystallography 2010; 66:213-21.

5. Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nature structural & molecular biology 2010; 17:38-43.

6. Ge W, Wolf A, Feng T, Ho CH, Sekirnik R, Zayer A, Granatino N, Cockman ME, Loenarz C, Loik ND, et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature chemical biology 2012; 8:960-2.

7. Yang M, Ge W, Chowdhury R, Claridge TD, Kramer HB, Schmierer B, McDonough MA, Gong L, Kessler BM, Ratcliffe PJ, et al. Asparagine and aspartate hydroxylation of the cytoskeletal ankyrin family is catalyzed by factor-inhibiting hypoxia-inducible factor. The Journal of biological chemistry 2011; 286:7648-60.